The Crop, Soil and Environmental Management major is administered through the Plant, Soil and Agricultural Systems department. The major has two specialized areas of study, with both specializations offering a general and science option. Students choosing the general option may select their upper division and elective credits from a wide choice of courses throughout the College of Agricultural Sciences and the University. If interests are more specialized, students may elect the science option and specialize in a specific discipline.

Crop Production and Management Specialization. This specialization provides the student with the background and preparation for careers in the biotechnology, seed, or plant industries incorporating both the traditional and molecular approaches to germplasm development, the agrichemical industry with expertise in crop management and protection employing a holistic approach to crop production by integrating the disciplines of plant pathology, entomology and weed science. This specialization will prepare students with careers with the Illinois/US EPA, US Forest Service, or the USDA (Agricultural Research, Forest, Animal and Plant Health Inspection Services).

Soil Science. Students selecting this specialization will receive training in soil quality management applying the principles of soil-water behavior, fertilizer use efficiency and soil ecology that influence the sustainability and quality of our soil and water resources. This specialization will prepare students with careers with the Illinois/US EPA and the USDA (National Resources Conservation Service) and the state Soil Water Conservation Service.

Opportunities for individual program development within the various specializations/options may be realized through work experience, internships, special studies, and seminars; however, no more than 30 hours of such unstructured coursework may be counted toward the degree. Students in all specializations/options are urged to make use of them to meet the goals and needs of their respective programs.

Students in all specializations must complete the crop, soil and environmental management core. These courses are CSEM 200, CSEM 240, one hour of CSEM 381, and CSEM 409.

There may be extra expenses for field trips, manuals, or supplies in some courses.

Technology Fee

The College of Agricultural Sciences assesses College of Agricultural Sciences undergraduate majors a technology fee of $4.58 per credit hour up to 12 credit hours. The fee is charged Fall and Spring semesters.

Bachelor of Science Degree in Crop, Soil and Environmental Management, College of Agricultural Sciences

Crop Production and Management (General)
Degree Requirements

Credit Hours

<table>
<thead>
<tr>
<th>University Core Curriculum Requirements</th>
<th>39+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for Major in Crop, Soil and Environmental Management Core Requirements</td>
<td>41</td>
</tr>
<tr>
<td>CSEM 200, CSEM 240, CSEM 300, CSEM 305, CSEM 381, CSEM 401, CSEM 403A, CSEM 409, CSEM 420, CSEM 447, CSEM 468</td>
<td>33</td>
</tr>
<tr>
<td>CSEM 300- or 400-level</td>
<td>8</td>
</tr>
<tr>
<td>Other required courses:</td>
<td></td>
</tr>
<tr>
<td>CHEM 140B</td>
<td>4</td>
</tr>
<tr>
<td>ABE 333, ABE 360, AGRI 323 or AGSE 318</td>
<td>2-3</td>
</tr>
<tr>
<td>Agricultural Sciences Electives at 300- or 400-level</td>
<td>5</td>
</tr>
<tr>
<td>Agricultural Science Electives</td>
<td>10</td>
</tr>
<tr>
<td>Other Electives</td>
<td>16-17</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
</tr>
</tbody>
</table>

1 MATH 106, MATH 109, MATH 125, MATH 140 or MATH 150 may be substituted CHEM 200 and CHEM 201 may be substituted Any UCOL 101 may be substituted
2 CHEM 210 and CHEM 211 may be substituted
3 Choose any from ABE, AGRI, AGSE, ANS, CSEM, HORT, HTA, HND, FOR

Bachelor of Science Degree in Crop, Soil and Environmental Management, College of Agricultural Sciences

Crop Production and Management (Science)

<table>
<thead>
<tr>
<th>University Core Curriculum Requirements</th>
<th>39+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements for Major in Crop, Soil and Environmental Management Core Requirements</td>
<td>33</td>
</tr>
</tbody>
</table>

1 MATH 108, CHEM 140A, PLB 200, UCOL 101I for additional two hours.
Bachelor of Science Degree in Crop, Soil and Environmental Management, College of Agricultural Sciences

Soil Science (Science)

<table>
<thead>
<tr>
<th>Degree Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Curriculum Requirements</td>
<td>39+2</td>
</tr>
<tr>
<td>To include MATH 108, CHEM 200, CHEM 201, PLB 200, UCOL 101I for additional two hours.</td>
<td>1</td>
</tr>
<tr>
<td>Requirements for Major in Crop, Soil and Environmental Management Core Requirements:</td>
<td>32</td>
</tr>
<tr>
<td>CSEM 200, CSEM 240, CSEM 381, CSEM 409, CSEM 441, CSEM 442, CSEM 443, CSEM 446, CSEM 447, CSEM 448, CSEM 454</td>
<td>36</td>
</tr>
<tr>
<td>Other required courses:</td>
<td>36</td>
</tr>
<tr>
<td>CHEM 210, CHEM 211, CHEM 340, CHEM 341, CHEM 350, GEOG 434, MATH 109, MATH 140, PLB 320, PHYS 203A, PHYS 203B, AGSE 472</td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
</tr>
</tbody>
</table>

1 MATH 106, or MATH 125 may be substituted Any UCOL 101 may be substituted
2 MATH 111, MATH 140 or MATH 150 may be substituted
Bachelor of Science Degree in Crop, Soil and Environmental Management, College of Agricultural Sciences

Soil Science (General)

<table>
<thead>
<tr>
<th>Degree Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Curriculum Requirements</td>
<td>39+2</td>
</tr>
<tr>
<td>To include MATH 108, CHEM 140A, PLB 200, UCOL 101I for additional two hours. ¹</td>
<td></td>
</tr>
<tr>
<td>Requirements for Major in Crop, Soil and Environmental Management Core Requirements:</td>
<td>32</td>
</tr>
<tr>
<td>CSEM 200, CSEM 240, CSEM 381, CSEM 409, CSEM 441, CSEM 442, CSEM 443, CSEM 446, CSEM 447, CSEM 448, CSEM 454</td>
<td></td>
</tr>
<tr>
<td>CSEM 300- or 400-level</td>
<td>8</td>
</tr>
<tr>
<td>Other required courses:</td>
<td>22</td>
</tr>
<tr>
<td>CHEM 140B ²</td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Sciences Electives at 300- or 400-level ³</td>
<td>9</td>
</tr>
<tr>
<td>Agricultural Science Electives</td>
<td>9</td>
</tr>
<tr>
<td>Electives</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
</tr>
</tbody>
</table>

¹ MATH 106, MATH 109, MATH 125, MATH 140 or MATH 150 may be substituted. CHEM 200 and CHEM 201 may be substituted. Any UCOL 101 may be substituted.
² CHEM 210 and CHEM 211 may be substituted.
³ Choose any from ABE, AGRI, AGSE, ANS, CSEM, HORT, HTA, HND, FOR

Crop, Soil and Environmental Management Minor

A minor in Crop, Soil and Environmental Management is offered. A total of 15 hours is required and at least 12 hours taken at the university. One course may be selected from CSEM 200, or CSEM 240 and at least eight hours from 300- or 400-level structured courses. The department chair or coordinating counselor must be consulted before selecting this field as a minor.

Crop, Soil and Environmental Management Courses

CSEM200 - Intro to Crop Science 200-3 Introduction to Crop Science. [IAI Course: AG 903] Production of important field crops of the world with greatest emphasis on U.S. and Midwestern field crops; crop production changes and adjustments, crop distribution over U.S., and crop groups and classifications,
special agronomic problems, crop enemies, crop ecology, fertilizer and liming practices, tillage, crop improvement through breeding. Field trip (no cost).

CSEM240 - Soil Science 240-4 Soil Science. [IAI Course: AG 904] Basic and applied chemical, physical, and biological concepts in soils. The origin, classification and distribution of soils and their relationship to humans and plant growth. Prerequisite: CHEM 140A or higher. Lab fee: $15.

CSEM257 - Work Experience 257-1 to 10 Work Experience. Credit for on-campus work experience in the areas of plant and soil science, or credit through a cooperative program developed between the department and the Office of Student Work and Financial Assistance. Credit awarded based on 4 hours of work per week during the semester for each hour of credit. Special approval needed from the department. Mandatory Pass/Fail.

CSEM300 - Field Crop Production 300-4 Field Crop Production. Principles of growth and production of field crops and their utilization. Laboratory demonstrating principles including research projects and modern production techniques. Prerequisite: CSEM 200.

CSEM305 - Plant Genetics 305-4 Plant Genetics. Principles of genetics and evolution of plants, elementary plant breeding, and the interaction between plant breeding and industry. Prerequisite: CSEM 200.

CSEM347 - Urban Soils 347-3 Urban Soils. A study of the function, structure, and management of soils in urban environments. The emphasis of this class is on urban horticulture: turf, urban forests, and landscape plants in urban settings. The course will focus on the understanding and implementation of basic soil concepts, with an emphasis on sustainability and management of urban soils to minimize maintenance and maximize its utility. Prerequisite: CSEM 240. Lab fee: $80.

CSEM359 - Intern Program 359-1 to 6 Intern Program. Supervised work experience program in either an agricultural agency of the government or agribusiness. Restricted to junior standing. Special approval needed from the department. Mandatory Pass/Fail.

CSEM370 - Agroecology: Sustainable Agricultural Systems 370-3 Agroecology-Sustainable Agricultural Systems. An introduction to the biotic, natural resource, environmental, social and economic implications and requirements of sustainable agriculture. Prerequisite: CSEM 200.

CSEM381 - CSEM Seminar 381-1 to 2 (1,1) Plant and Soil Science Seminar. Discussion of special topics and/or problems in the various areas of plant and soil science. Prerequisite: CMST 101. Restricted to junior standing.

CSEM390 - Special Studies in CSEM 390-1 to 8 Special Studies in Plant and Soil Science. Assignments involving research and individual problems. Special approval needed from the department.

CSEM391 - Honors in CSEM 391-1 to 4 Honors in Plant and Soil Science. Independent undergraduate research sufficiently important to three hours per week of productive effort for each credit hour. Special approval needed from the department.

CSEM400 - Trends-Soil Sci & Agronomy 400-3 Trends in Soil Science and Agronomy. (Same as PSAS 400) A discussion session format will be employed as a means of acquainting students with recent literature and allowing them to remain current with latest developments in their area of specialty. Special approval needed from the department.

CSEM401 - Agricultural Plant Pathology 401-2 Agricultural Plant Pathology. (Same as PSAS 401) A study of micro- and macro organisms and environmental factors that cause disease in plants of agricultural importance; of the mechanisms by which these factors induce disease in plants; and of the methods for managing diseases and reducing the damage they cause. Prerequisite: CSEM 200.

CSEM403A - Field Crop Diseases 403A-2 Field Crops Diseases. (Same as PSAS 403A) A survey of major diseases of important field crops in the United States. Disease identification, cycles, and management strategies will be addressed. Not for graduate credit. Prerequisite: CSEM 200.
CSEM405 - Plant Breeding 405-3 Plant Breeding. (Same as PSAS 405) Principles of plant breeding emphasized together with their application to the practical breeding of agronomic, horticultural, and forest plants. Prerequisite: CSEM 200. Field trip costs approximately $10.

CSEM408 - World Crop Production 408-3 World Crop Production. Climatological, ecological, physiological, sociological, and economical factors influencing world crop production practices. This course intends to provide students the opportunity to observe world crop production systems on a first-hand basis. Crop specific production, harvesting, processing, and marketing methods will be discussed. Special approval needed from the department.

CSEM409 - Crop Physiology 409-3 Crop Physiology. (Same as HORT 409, PSAS 409) Principles of basic plant physiology. Topics include cell structure, photosynthesis, respiration, water and mineral relations, vascular transport and plant growth regulators. Prerequisites: PLB 200, CHEM 140B. Fee: $50.

CSEM419 - Plant Molecular Biology 419-3 Plant Molecular Biology. (Same as PSAS 419, PLB 419) A survey of molecular phenomena unique to plant systems. Topics will include: genome organization and synteny between plant genomes, transcriptional and post-transcriptional control of gene expression, signal transduction, epigenetics, plant-pathogen interactions and responses to biotic- and abiotic-stresses. Prerequisite: CSEM 305.

CSEM420 - Crop Pest Control 420-4 Crop Pest Control. (Same as PSAS 420) Study of field pests of forest, orchard, field, and garden crops; pest control principles and methods; control strategy; and consequences of pest control operations. Prerequisite: CSEM 200. Lab fee: $35.

CSEM425 - Environmental Plant Phys 425-4 Environmental Physiology of Plants. (Same as PLB 425; Same as PSAS 425) The environmental physiology of plants focuses on the 1) influence of abiotic factors (e.g., light, water, temperature, nutrients, pollutants) on growth, development, and yield; 2) mechanisms by which plants respond to these abiotic factors; 3) use of biotechnology to increase abiotic stress tolerance in model and crop plants. Prerequisite: PLB 320 or CSEM 409. A $35 laboratory fee will be assessed.

CSEM426 - Genomics & Bioinformatics 426-4 Genomics and Bioinformatics. (Same as PSAS 426) This course is designed to introduce students from a variety of backgrounds and departments to the scope and methodology of genomic and bioinformatic sciences. Real problems and solutions from genome data analysis are studied in this course to see how high throughput genomics is driving bioinformatics, and changing the biological sciences in revolutionary way. Prerequisite: CSEM 305.

CSEM427 - Plant Biochemistry 427-5 Plant Biochemistry. (Same as PLB 427 and PSAS 427) Exploration of fundamental biochemical pathways in plants with an emphasis upon carbon and nitrogen metabolism. Not for graduate credit. Special approval needed from the department. Lab fee: $35.

CSEM433 - Intro to Ag Biotechnology 433-3 to 7 Introduction to Agricultural Biotechnology. (Same as AGSE 433, ANS 433, HORT 433, PLB 433, PSAS 433) This course will cover the basic principles of plant and animal biotechnology using current examples; gene mapping in breeding, transgenic approaches to improve crop plants and transgenic approaches to improve animals will be considered. Technology transfer from laboratory to marketplace will be considered. An understanding of gene mapping, cloning, transfer, and expression will be derived. Not for graduate credit. Special approval needed from the department.

CSEM435 - Ag Molecular Biotech Seminar 435-1-4 Agricultural Molecular Biotechnology Seminar. (Same as ANS 435 and PSAS 435) Molecular biology is rapidly making important contributions to agricultural science through biotechnology. An appreciation of the techniques of molecular biology and their application to plant improvement is important to all in agriculture and biology. The relationships between plant molecular biology and the biotechnology industry will be discussed. Presentations on particular research problems will be made. Graded P/F. Not for graduate credit.

CSEM438 - Molecular Genetics Lab 438-3 Plant and Animal Molecular Genetics Laboratory. (Same as PLB 438, PSAS 438, AGSE 438, ZOOL 438) Arabidopsis and Drosophila model organisms, lab-based training in laboratory safety, reagent preparation, phenotype analysis, genetics, DNA and RNA analysis, PCR, cDNA construction, cloning and sequencing of genes. Includes plant and bacterial transformation, and a population level analysis of genetic variation using RAPD markers in grasses and Alu insertion in...
humans. Two 2-hr labs and one 1-hr lecture per week. Not for graduate credit. Prerequisite: BIOL 305 or equivalent or consent of instructor. Lab fee: $30.

CSEM441 - Soil Morphology & Classification 441-3 Soil Morphology and Classification. (Same as PSAS 441) Development, characteristics, and identification of soils, study of profiles; and interpretation and utilization of soil survey information in land use planning. Not for graduate credit. Prerequisite: CSEM 240. Field trip costing approximately $5.

CSEM442 - Soil Physics 442-3 Soil Physics. (Same as PSAS 442) A study of the physical properties of soils with special emphasis on soil and water relationships, soil productivity, and methods of physical analysis. Not for graduate credit. Prerequisite: CSEM 240.

CSEM443 - Soil Management 443-3 Soil Management. (Same as PSAS 443) The soil as a substrate for plant growth. Properties of the soil important in supplying the necessary mineral nutrients, water and oxygen and for providing an environment conducive to plant root system elaboration. Soil management techniques important in optimizing plant growth. Not for graduate credit. Prerequisite: CSEM 240.

CSEM445 - Irrigation Principles & Practices 445-3 Irrigation Principles and Practices. (Same as PSAS 445) This course will cover basic principles of irrigation sciences; water requirements of crops; soil water relationship; water application methods including flooding, sprinkler, and drip (or trickle) systems; water conveyance, distribution and measurement; evaluation of irrigation efficiency; and irrigation scheduling. Considerations will also include crop production effects and economic aspects of irrigation. Not for graduate credit. Prerequisite: CSEM 240.

CSEM446 - Soil & Water Conservation 446-3 Soil and Water Conservation. (Same as PSAS 446) Covers the principles of hydrologic processes and soil erosion. Consideration will be given to the occurrence of soil erosion as it affects humans, food production, and the environment. The methods and technologies for protecting against and controlling of erosion will also be discussed. Not for graduate credit. Special approval needed from the department.

CSEM447 - Fertilizers & Soil Fertility 447-3 Fertilizers and Soil Fertility. (Same as PSAS 447) Recent trends in fertilizer use and the implications of soil fertility build up to sufficiency and/or toxicity levels; the behavior of fertilizer material in soils and factors important in ultimate plant uptake of the nutrients; the plant-essential elements in soils and ways of assessing their needs and additions; tailoring fertilizer for different uses and management systems; implication of excessive fertilization in our environment. Not for graduate credit. Concurrent enrollment in CSEM 448 required. Prerequisite: CSEM 240.

CSEM448 - Soil Fertility Evaluation 448-2 Soil Fertility Evaluation. (Same as PSAS 448) A laboratory course designed to acquaint one with practical soil testing and plant analysis methods useful in evaluating soil fertility and plant needs. One hour lecture, two hours laboratory. Not for graduate credit. Concurrent enrollment in CSEM 447 required. Prerequisite: CSEM 240. Lab fee: $15.

CSEM454 - Soil Microbiology 454-4 Soil Microbiology. (Same as MICR 454, PSAS 454) A study of microbial numbers, characteristics and biochemical activities of soil microorganisms with emphasis on transformations of organic compounds, nitrogen phosphorus, sulfur, iron, and plant essential nutrients. Not for graduate credit. Prerequisite: CSEM 240 or MICR 301. Lab fee: $15.

CSEM455 - Plant-Microbe Interactions 455-3 Biology of Plant-Microbe Interactions. (Same as PSAS 455) The molecular basis of host-pathogen interactions and disease development in plants is examined with a critical review of original and current literature focusing on the mechanisms of pathogenesis, virulence, disease development and resistance, and response mechanisms in plants. Prerequisite: CSEM 200.

CSEM468 - Weeds-Their Control 468-3 Weeds - Their Control. (Same as PSAS 468) Losses due to weeds, weed identification and distribution, methods of weed dissemination and reproduction, mechanical, biological, and chemical control of weeds. State and Federal legislation pertaining to weed control herbicides. Herbicide commercialization. Not for graduate credit. Prerequisite: CSEM 200. Field trips costing approximately $5.
Crop, Soil and Environmental Management Faculty

Bond, Jason, Professor, Ph.D., Louisiana State University, 1999.
Chong, She Kong, Professor, Emeritus, Ph.D. University of Hawaii, 1979.
Fakhoury, Ahmad, Associate Professor, Ph.D., Purdue University, 2001.
Gage, Karla, Assistant Professor, Ph.D., Southern Illinois University, 2013.
Jones, K. L., Professor and Chair, Ph.D., Texas A&M University, 1999.
Kantartzi, Stella, Associate Professor, Ph.D., Aristotle University of Thessaloniki, 2006.
Klubek, Brian P., Professor, Emeritus, Ph.D., Utah State University, 1977.
Lightfoot, David A., Professor, Ph.D., University of Leeds, 1984.
McGuire, James M., Professor, Emeritus, Ph.D., North Carolina State University, 1961.
Meksem, Khalid, Professor, Ph.D., University of Cologne, 1995.
Olsen, Farrel J., Professor, Emeritus, Ph.D., Rutgers University, 1961.
Russin, John S., Professor, Emeritus, Ph.D., University of Kentucky, 1983.
Schmidt, Michael E., Associate Professor, Emeritus, Ph.D., Southern Illinois University, 1994.
Stucky, Donald J., Professor, Emeritus, Ph.D., Purdue University, 1963.
Tweedy, James A., Professor, Emeritus, Ph.D., Michigan State University, 1966.
Varsa, Edward C., Professor, Emeritus, Ph.D., Michigan State University, 1970.

Last updated: 02/02/2017

Southern Illinois University
Carbondale, IL 62901
Phone: (618) 453-2121

Catalog Year Statement:
Students starting their collegiate training during the period of time covered by this catalog (see bottom of this page) are subject to the curricular requirements as specified herein. The requirements herein will extend for a seven calendar-year period from the date of entry for baccalaureate programs and three years for associate programs. Should the University change the course requirements contained herein subsequently, students are assured that necessary adjustments will be made so that no additional time is required of them.