Mission Statement

The mission of the Department of Electrical and Computer Engineering is to serve society as a center for learning and innovation in all major areas of electrical and computer engineering. The department accomplishes its mission by disseminating existing knowledge through teaching, by creating new knowledge through research and publications, and by converting original ideas and concepts into new technologies. Through integration of education and research, the department creates the academic environment necessary for training innovators and leaders for the future.

Bachelor of Science Degree in Electrical Engineering

The fundamental goal of the undergraduate program in Electrical Engineering is to offer a high-quality education, designed to achieve the following specific educational objectives:

Educational Objectives

Within a few years of graduation, Electrical Engineering graduates are expected to attain:

1. Increasing responsibility beyond that in their entry-level description in job functions within Electrical Engineering or related employment, and/or
2. Successful progress within graduate degree programs in Electrical Engineering or other professional degrees such as other Engineering, Business, Law or Medicine, and
3. Continued successful professional development and adaptation to evolving technologies within their chosen field.

The flexibility of the electrical engineering curriculum allows the students to choose courses among four tracks:

1. **Electronic Circuits and Devices**: electronic circuits, instrumentation, RF circuit design, microwave circuit design. Relevant courses: ECE 423, ECE 438, ECE 440, ECE 446, ECE 447, ECE 449, ECE 479.
2. **Electromagnetics and Photonics**: microwave engineering, antenna systems, fiber optic systems. Relevant courses: ECE 441, ECE 448, ECE 472, ECE 477, ECE 479.
3. **Power Systems and Energy**: utility power systems, energy systems, electric drives. Relevant courses: ECE 481, ECE 483, ECE 484, ECE 486, ECE 487, ECE 488, ECE 489.
4. **Signals and Control**: signals and systems, signal processing, telecommunications, control. Relevant courses: ECE 456, ECE 459, ECE 466, ECE 467, ECE 468A, ECE 471, ECE 476, ECE 478.

Employment opportunities exist within a wide range of organizations, such as computer, semiconductor, aviation, electronics, microelectronics, broadcasting, telecommunications, defense, automotive, manufacturing and electric power companies, state and federal agencies and laboratories. Employment opportunities cover the spectrum of engineering activities, ranging from research and development, to systems analysis, automation, manufacturing, customer service and support, marketing and sales.
The undergraduate program in Electrical Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.

Bachelor of Science Degree in Electrical Engineering

Electrical Engineering Major

<table>
<thead>
<tr>
<th>Degree Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Curriculum Requirements</td>
<td>39</td>
</tr>
<tr>
<td>Foundation Skills: CMST 101, ENGL 101, ENGL 102, MATH 150, UNIV 101</td>
<td>13</td>
</tr>
<tr>
<td>Disciplinary Studies: Fine Arts, BIO 202, Humanities, PHYS 205A, PHYS 205B, Social Science</td>
<td>23</td>
</tr>
<tr>
<td>Integrative Studies (Multicultural/Diversity)</td>
<td>3</td>
</tr>
<tr>
<td>Requirements for Electrical Engineering Major</td>
<td>87</td>
</tr>
<tr>
<td>Basic Science: PHYS 205A, PHYS 205B, PHYS 255A, PHYS 255B, BIO 202, Science Elective (with lab)</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics: MATH 150, MATH 250, MATH 251, MATH 305</td>
<td>11</td>
</tr>
<tr>
<td>ECE Required Courses: ECE 222, ECE 235, ECE 235L, ECE 296, ECE 296L, ECE 315, ECE 327, ECE 327L, ECE 336, ECE 345, ECE 345L, ECE 355, ECE 355L, ECE 356, ECE 356L, ECE 375, ECE 375L, ECE 385, ECE 385L, ECE 495E, ECE 495D</td>
<td>48</td>
</tr>
<tr>
<td>ECE Technical Electives</td>
<td>16</td>
</tr>
<tr>
<td>General Electives</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>126</td>
</tr>
</tbody>
</table>

1 For Science Elective choose from biological, chemical, or physical science (CHEM 200 + CHEM 201, PHYS 305 + PHYS 355, PHSLS 201 + PHSLS 208).

2 Approved by the department. Approved ECE technical electives: ECE 3XX or 4XX level (except ECE 392, ECE 492 & ECE 493. At least 10 ECE hours not from ECE 412, ECE 422, ECE 423, ECE 424, ECE 425, ECE 426, ECE 427, ECE 428, ECE 429, ECE 430, ECE 431, ECE 432.

3 Approved by the department. Approved general technical electives: ECE 3XX or 4XX level (except ECE 493); CHEM 210; MATH 221, MATH 282, MATH 302, MATH 349, MATH 380, or 4XX level (except MATH 411, MATH 412); CS 3XX or 4XX level (except CS 300, CS 301, CS 393, or CS 493); ENGR 2XX, 3XX, 4XX (except ENGR 222, ENGR 296, ENGR 335), ENGR 3XXi (if not already counted toward the student's core requirement); BME 485 or BME 597; IMAE 470A.
Capstone Option for Transfer Students

The SIU Capstone Option is available to students who have earned an Associate in Engineering Sciences (AES) degree with a minimum cumulative 2.0/4.0 GPA on all accredited coursework prior to the completion of the AES, as calculated by SIU. The Capstone Option reduces the University Core Curriculum requirements from 39 to 30 hours, therefore reducing the time to degree completion. Students interested in the Capstone Option should contact the College of Engineering Advisement Office to develop a personal coursework pathway to degree completion.

Electrical Engineering Major - Biomedical Specialization

<table>
<thead>
<tr>
<th>Degree Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Curriculum Requirements</td>
<td>39</td>
</tr>
<tr>
<td>Foundation Skills: CMST 101, ENGL 101, ENGL 102, MATH 150, UNIV 101</td>
<td>13</td>
</tr>
<tr>
<td>Disciplinary Studies: Fine Arts, BIO 202, Humanities, PHYS 205A, PHYS 205B, Social Science</td>
<td>23</td>
</tr>
<tr>
<td>Integrative Studies (Multicultural/Diversity)</td>
<td>3</td>
</tr>
<tr>
<td>Requirements for Electrical Engineering with a Biomedical Specialization</td>
<td>87</td>
</tr>
<tr>
<td>Basic Science: PHYS 205A, PHYS 205B, PHYS 255A, PHYS 255B, BIO 202, Science Elective (with lab)</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics: MATH 150, MATH 250, MATH 251, MATH 305</td>
<td>11</td>
</tr>
<tr>
<td>ECE Required Courses: ECE 222, ECE 235, ECE 235L, ECE 296, ECE 296L, ECE 315, ECE 327, ECE 327L, ECE 336, ECE 345, ECE 345L, ECE 355, ECE 355L, ECE 356, ECE 356L, ECE 375, ECE 375L, ECE 385, ECE 385L, ECE 495E, ECE 495D</td>
<td>48</td>
</tr>
<tr>
<td>ECE Technical Electives</td>
<td>16</td>
</tr>
<tr>
<td>General Technical Electives</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>126</td>
</tr>
</tbody>
</table>

1 For Science Elective choose from biological or chemical science (CHEM 200 + CHEM 201, PHSL 201 + PHSL 208).

2 Approved by the department. Approved ECE technical electives: ECE 3XX or 4XX level (except ECE 392, ECE 492, ECE 493). At least 10 hours not from ECE 412, ECE 422, ECE 423, ECE 424, ECE 425, ECE 426, ECE 427, ECE 428, ECE 429, ECE 430, ECE 431, ECE 432. At least 9 hours from ECE 438, ECE 458, ECE 460, ECE 467, ECE 468A, ECE 534, ECE 539, ECE 568, ECE 572, ECE 578.

3 Approved by the department. Approved general technical electives: ECE 3XX or 4XX level (except ECE 493); CHEM 210; MATH 221, MATH 282, MATH 302, MATH 349, MATH 380, or 4XX level (except MATH 411, MATH 412); CS 3XX or 4XX level (except CS 300, CS 301, CS 393, or CS 493); ENGR 2XX,
Electrical Engineering Major - Power and Energy Engineering Specialization

<table>
<thead>
<tr>
<th>Degree Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Curriculum Requirements</td>
<td>39</td>
</tr>
<tr>
<td>Foundation Skills: CMST 101, ENGL 101, ENGL 102, MATH 150, UNIV 101</td>
<td>13</td>
</tr>
<tr>
<td>Disciplinary Studies: Fine Arts, BIO 202, Humanities, PHYS 205A, PHYS 205B, Social Science</td>
<td>23</td>
</tr>
<tr>
<td>Integrative Studies (Multicultural/Diversity)</td>
<td>3</td>
</tr>
<tr>
<td>Requirements for Electrical Engineering with a Power and Energy Specialization</td>
<td>87</td>
</tr>
<tr>
<td>Basic Science: PHYS 205A, PHYS 205B, PHYS 255A, PHYS 255B, BIO 202, Science Elective (with lab)</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics: MATH 150, MATH 250, MATH 251, MATH 305</td>
<td>11</td>
</tr>
<tr>
<td>ECE Required Courses: ECE Required Courses: ECE 222, ECE 235, ECE 235L, ECE 296, ECE 296L, ECE 315, ECE 327, ECE 327L, ECE 336, ECE 345, ECE 345L, ECE 355, ECE 355L, ECE 356, ECE 356L, ECE 375, ECE 375L, ECE 385, ECE 385L, ECE 495E, ECE 495D</td>
<td>48</td>
</tr>
<tr>
<td>ECE Technical Electives</td>
<td>18</td>
</tr>
<tr>
<td>General Technical Electives</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>126</td>
</tr>
</tbody>
</table>

1 For Science Elective choose from biological, chemical, or physical science (CHEM 200 + CHEM 201, PHYS 305 + PHYS 355, PHSL 201 + PHSL 208).
2 At least 18 hours from ECE 456, ECE 481, ECE 482, ECE 483, ECE 484, ECE 486, ECE 487, ECE 488, ECE 489.
3 Approved by the department. Approved general technical electives: ECE 3XX or 4XX level (except ECE 493); CHEM 210; MATH 221, MATH 282, MATH 302, MATH 349, MATH 380, or 4XX level (except MATH 411, MATH 412); CS 3XX or 4XX level (except CS 300, CS 301, CS 393, or CS 493); ENGR 2XX, 3XX, 4XX (except ENGR 222, ENGR 296, ENGR 335), ENGR 3XXi (if not already counted toward the student's core requirement); BME 485 or BME 597; IMAE 470A

Students interested in meeting the requirements of both the Electrical Engineering and the Computer Engineering degree programs may ask the advisement office for a guide suggesting how one may complete both in a timely manner.
Electrical Engineering Courses

ECE222 - Intro to Digital Computation 222-3 Introduction to Digital Computation. Digital computation to solve basic problems in electrical and computer engineering. Analyzing problems, flowcharting, coding, executing, diagnosing, and verifying solutions. Programming in C++ language. Prerequisite: Mathematics 111 with a grade of C or better. Lab fee: $10 to help defray cost of equipment.

ECE296 - Intro Software Tools Robotics 296-2 Introduction to Software Tools and Robotics. Scientific computing using MATLAB and Simulink. Introduction to interpreted programming languages and basic programming principles. Introduction to Programmable Logic Controllers and Microcontrollers. Prerequisite: MATH 150 with a grade of C or better and MATH 250, which can be taken concurrently. Co-requisite: ECE 296L required.

ECE296L - SW Tools & Robotics Lab 296L-2 Introduction to Software Tools and Robotics Lab. Hands-on application of micro-controllers for motor control, basic robotics, and data acquisition using various sensors. Application of interpreted programming languages to interact with various hardware. Use of Mindstorms hardware to demonstrate principles of robotic control. Hands-on application of programmable logic controllers and ladder logic. Co-requisite: ECE 296. Lab fee: $25 to help defray cost of software licenses and equipment.

ECE315 - Math Methods ECE 315-4 Mathematical Methods in ECE. A four-part course designed to introduce all Electrical and Computer Engineering students to fundamental and advanced mathematical methods, through applications to engineering problems. Part A: Introduction to differential equations and applications to electric circuits, systems, and electromagnetic fields. Part B: applications of complex variables to electrical circuits, systems and electromagnetic fields. Part C: applications of linear algebra and matrix methods to electric circuits, systems and electromagnetic fields. Part D: Number systems. Boolean algebra. Probability, combinatorics and statistics with applications to ECE problems. Prerequisite: MATH 250 with a grade of C or better.

ECE321 - Intro Software Engineering 321-3 Introduction to Software Engineering. Introduction to tools, concepts and techniques to develop complex software projects. The tools include object-oriented programming and advanced data structures. Concepts and techniques include introduction to principles of operating systems and introduction to software engineering, including requirements specifications, design methodology, and testing. Prerequisite: ECE 222 with a grade of C or better.

ECE321H - Intro to Software Engineering 321H-3 Introduction to Software Engineering. (University Honors Program) Introduction to tools, concepts and techniques to develop complex software projects. The tools include object-oriented programming and advanced data structures. Concepts and techniques include introduction to principles of operating systems and introduction to software engineering, including requirements specifications, design methodology, and testing. Prerequisite: ECE 222 with grade 'C' or better.

ECE321L - Intro to Software Engr Lab 321L-1 Introduction to Software Engineering-Lab. Application development on Visual Studio. Prerequisite: ECE 222 with a grade of C or better. Co-requisite: ECE 321. Lab fee: $10 to help defray cost of equipment.

Design. Synthesis and simulation with the Verilog Hardware Description Language (HDL). Prerequisite: ECE 222 with a grade of C or better. Concurrent enrollment required in ECE 327L.

ECE327L - Digital Circuit Design HDL Lab 327L-1 Digital Circuit Design with HDL-Laboratory. Implementation of digital combinational and sequential designs in hardware using SSI/MSI parts. Synthesis and simulation with the Verilog Hardware Description Language (HDL) using the Cadence SimVision and Cadence RTL Compiler CAD tools. Prerequisite: ECE 222 with a grade of C or better. Co-requisite: ECE 327 or ECE 327H. Lab fee: $60 to help defray cost of software licenses, equipment and consumable items.

ECE329 - Computer Organization & Design 329-3 Computer Organization and Design. Introduction to the design and organization of digital computers: data-path and control, hardwired and microprogrammed control, interrupts, memory organization concepts. An introduction to optimization issues. Design and implementation of simple computers with hardwired and microprogrammed control. Prerequisite: ECE 315 with a grade of C or better. Concurrent enrollment required in ECE 329L.

ECE329H - Computer Org & Design Honors 329H-3 Computer Organization and Design Honors. (University Honors Program) Introduction to the design and organization of digital computers: data-path and control, hardwired and microprogrammed control, interrupts, memory organization concepts. An introduction to optimization issues. Design and implementation of simple computers with hardwired and microprogrammed control. Prerequisite: ECE 327 with a C or better. Concurrent enrollment allowed in ECE 329L.

ECE329L - Computer Org/Design Lab 329L-1 Computer Organization and Design Lab. A sequence of labs for design and implementation of simple computers with hardwired and microprogrammed control. Prerequisite: ECE 315 with a grade of C or better. Concurrent enrollment in ECE 329 required. Lab fee: $50 to help defray cost of equipment and consumable items.

ECE336 - Electric Circuits II 336-3 Electric Circuits II. Sinusoidal steady state power, three-phase circuits, magnetic circuits, mutual inductance, frequency response, Laplace transform and applications to circuits, Fourier series and Fourier transform, filter circuits, Two- and three-port networks. Use of Pspice. Prerequisite: ECE 235 with a minimum grade of C.

ECE345 - Electronics 345-3 Electronics. Introduction to microelectronics, analog and digital systems, basic physics of semiconductors, diode models and circuits, bipolar junction transistors (BJTs) and BJT amplifier circuits, MOSFETs and MOSFET amplifier circuits, operational amplifiers (op-amps), op-amp circuits, non-ideal characteristics of the op-amp. Lecture. Prerequisites: ECE 235 and PHYS 205B with grades of C or better. Concurrent enrollment in ECE 345L allowed.

ECE345H - Electronics Honors 345H-3 Electronics-Honors. (University Honors Program) Introduction to microelectronics, analog and digital systems, basic physics of semiconductors, diode models and circuits, bipolar junction transistors (BJTs) and BJT amplifier circuits, MOSFETs and MOSFET amplifier circuits, operational amplifiers (op-amps), op-amp circuits, non-ideal characteristics of the op-amp. Lecture. Prerequisite: ECE 235 and PHYS 205B with grades of C or better. Concurrent enrollment allowed in ECE 345L.

ECE345L - Electronics Lab 345L-1 Electronics Lab. Introduction to microelectronics, analog and digital systems, basic physics of semiconductors, diode models and circuits, bipolar junction transistors (BJTs) and BJT amplifier circuits, MOSFETs and MOSFET amplifier circuits, operational amplifiers (op-amps), op-amp circuits, non-ideal characteristics of the op-amp. Laboratory. Prerequisite: ECE 235 and PHYS 205B with grades of C or better. Co-requisite: ECE 345. Lab fee: $50 to help defray cost of equipment and consumable items.
ECE355 - Signals and Systems 355-3 Signals and Systems. Signal and system classification, operations on signals, time-domain analysis, impulse response and stability, Fourier series and transform, application to communications, Laplace transform, application to linear circuits and systems, frequency response techniques, introduction to discrete-time signals and systems, sampling, discrete and fast Fourier transforms. Lecture. Prerequisite: ECE 235, ECE 315 and MATH 250 with grades of C or better. Concurrent enrollment allowed in ECE 355L. Lab fee: $20 to help defray cost of software licenses and equipment.

ECE355H - Signals & Systems Honors 355H-3 Signals and Systems Honors. (University Honors Program) Signal and system classification, operations on signals, time-domain analysis, impulse response and stability, Fourier series and transform, application to communications, Laplace transform, application to linear circuits and systems, frequency response techniques, introduction to discrete-time signals and systems, sampling, discrete and fast Fourier transforms. Lecture. Prerequisite: ECE 235, ECE 315 and MATH 250 with grades of C or better. Concurrent enrollment allowed in ECE 355L. Lab fee: $20 to help defray cost of software licenses and equipment.

ECE355L - Signals and Systems Lab 355L-1 Signals and Systems Lab. Signal and system classification, operations on signals, time-domain analysis, impulse response and stability, Fourier series and transform, application to communications, Laplace transform, application to linear circuits and systems, frequency response techniques, introduction to discrete-time signals and systems, sampling, discrete and fast Fourier transforms. Laboratory. Prerequisite: ECE 235, ECE 315 and MATH 250 with grades of C or better. Concurrent enrollment in ECE 355 or ECE 355H required.

ECE356 - Linear Control Systems 356-3 Linear Control Systems. Introduction to signals, linear systems theory, the Laplace transform, modeling of dynamic systems and circuits, dynamic response, basic properties of feedback PID control, root-locus design method, and frequency-response design method. Prerequisite: ECE 235, ECE 315, ECE 355 (may be taken concurrently), and MATH 250 with grades of C or better. ECE 356L may also be taken concurrently.

ECE356L - Systems & Control Lab 356L-1 Systems and Control Laboratory. Modeling and identification of linear time-invariant systems, understanding the effects of time delay, lead/lag controller design, PID control, controller implementation on digital computers all on a heat flow testbed. Prerequisite: ECE 356 with a C or better or concurrent enrollment. Lab fee: $20 to help defray cost of equipment.

ECE361 - Intro Biomedical Engineering 361-3 Introduction to Biomedical Engineering. This course provides an introductory overview of current trends and principles of biomedical engineering. Application of engineering approaches to the analysis of biomedical systems. Principles, practice, and the role of biomedical engineers in science, engineering, healthcare, and commercialization of medical products. Professional moral and ethical issues in biomedical engineering. Prerequisite: ECE 296 with a grade of C or better or consent of instructor.

ECE375 - Intro Electromagnetic Fields 375-3 Introduction to Electromagnetic Fields. Elementary electromagnetic field theory, vectors, static, quasi-static and time-harmonic fields, transmission lines and materials, Smith charts, Maxwell's equations in integral and differential forms, force, energy and power, plane waves, engineering tools and applications. Lecture. Prerequisite: ECE 235, MATH 251 and PHYS 205B with grades of C or better. Concurrent enrollment allowed in ECE 375L.

ECE375H - Intro Electromagnetic Fields 375H-4 Introduction to Electromagnetic Fields. (University Honors Program) Elementary electromagnetic field theory, vectors, static, quasi-static and time-harmonic fields, transmission lines and materials, Smith charts, Maxwell's equations in integral and differential forms, force, energy and power, plane waves, engineering tools and applications. Lecture and laboratory. Prerequisites: ECE 235, Mathematics 251 and Physics 205B.

ECE375L - Intro Electromagnetic Lab 375L-1 Intro Electromagnetic Laboratory. Study of elementary electromagnetic fields and waves, guided and wireless, using engineering simulation, fabrication, measurement and testing tools and design applications. Laboratory. Prerequisite: ECE 235, MATH 251 and PHYS 205B with grades of C or better. Co-requisite: ECE 375. Lab fee: $110 to help defray cost of software licenses.

Power transformers. AC machines: synchronous machines; synchronous motors; induction motors. DC machines. Prerequisite: ECE 235 with a grade of C or better. Concurrent enrollment allowed in ECE 385L.

ECE385L - Electric Machines Lab 385L-1 Electric Machines Lab. Laboratory experiments to accompany the ECE 385 course. AC power measurements, power transformers, synchronous machine, induction machine, DC machine. Prerequisite: ECE 235 with a grade of C or better; co-requisite: ECE 385. Lab fee: $70 to help defray cost of equipment.

ECE392 - ECE Co-op Education 392-1 to 6 Electrical Engineering Cooperative Education. Supervised work experience in industry, government or in a professional organization. Students work with on-site supervisor and faculty adviser. Reports are required from the student and the employer. Hours do not count toward degree requirements. Mandatory Pass/Fail. Restricted to sophomore standing.

ECE412 - Wireless Networks 412-3 Wireless Networks. (Same as ECE 512) This undergraduate level course first introduces several widely adopted wireless communication technologies and then presents the concept, structure, and principles of ad hoc wireless networks. Novel applications in those networks will also be introduced. The coursework will include paper and literature reviews, presentations, assignments, and projects that will enable students to be familiar with ad hoc wireless networks. NS3 will be used for student projects in this course. Prerequisites: ECE 222 and ECE 355 with grades of C or better. Lab fee: $10 to help defray cost of equipment.

ECE422 - Comp Network Syst Arch 422-4 Computer Network System Architecture. (Same as ECE 553) Principles of Computer Networks. Protocols and system level implementations. Socket programming, router and switching fabric architecture, security and packet classification techniques, multimedia networking and QoS. Prerequisite: ECE 327. Lab fee: $10 to help defray cost of equipment.

ECE423 - Digital VLSI Design 423-4 Digital VLSI Design. (Same as ECE 513) Principles of the design and layout of Very Large Scale Integrated (VLSI) circuits concentrating on the CMOS technology. MOS transistor theory and the CMOS technology. Characterization and performance estimation of CMOS gates, CMOS gate and circuit design. Layout and simulation using CAD tools. CMOS design of datapath subsystems. Design of finite state machines. Examples of CMOS system designs. Laboratory experience in CMOS VLSI design. Lecture and Laboratory. Prerequisite: ECE 327 and 345. Lab fee: $35 to help defray cost of software licenses and equipment.

ECE424 - Design of Embedded Systems 424-4 Design of Embedded Systems. (Same as ECE 514) Introduction of modern embedded system application, platform architecture and software development. Principles of embedded processor architecture, operating systems and networking connectivity. Design and optimize in terms of system power, security and performance. Rapid prototyping using Intel-Atom based platform. Lecture and laboratory. Prerequisite: ECE 321 and ECE 329, or consent of instructor. Lab fee: $10 to help defray cost of equipment.

ECE425 - VLSI Design & Test Automation 425-4 VLSI Design and Test Automation. (Same as ECE 520) Principles of the automated synthesis, verification, testing and layout of Very Large Scale Integrated (VLSI) circuits concentrating on the CMOS technology. Resource allocation and scheduling in high-level
synthesis. Automation of the logic synthesis for combinational and sequential logic. The physical design automation cycle and CMOS technology considerations. Fault modeling and testing. Timing analysis. Laboratory experience using commercial tools for synthesis and layout. Prerequisite: ECE 329. Lab fee: $30 to help defray cost of software licenses and equipment.

ECE426 - Implement VLSI Sysys w/HDL 426-4 Implementation of VLSI Systems with HDL. (Same as ECE 516) This course is dedicated for advanced Digital VLSI architecture and system implementation for high performance and low power digital signal processing applications. Application-specific processors and architectures to support real time processing of signal processing systems will be studied. Hands-on experience of using state-of-the-art CAD tools on designing such kind of VLSI architecture and systems. Upon completion of this course, students will entail large HDL-based implementation of a complete VLSI system. Prerequisite: ECE 327 with a grade of C or better. Lab fee: $35 to help defray cost of software licenses and equipment.

ECE427 - Intro Interconnection Networks 427-3 Introduction to Integrated Interconnection Networks. Role of interconnection networks. Specifications and constraints. Topology, routing, flow control, deadlock, livelock, arbitration, allocation. Prerequisite: ECE 329 with a grade of C or better.

ECE428 - Programmable ASIC Design 428-4 Programmable ASIC Design. (Same as ECE 528) Principle and practice of designing and implementing Application-Specific Integrated Circuits (ASIC). Field Programmable Gate Arrays (FPGA). Timing analysis, timing closure and managing difference clock domains in ASIC design. Complex arithmetic circuits. Digital signal processing (DSP) circuits. FPGA microprocessors. Prerequisite: ECE 327 with a grade of C or better. Lab fee: $50 to help defray cost of equipment and consumable items.

ECE429 - Computer Systems Architecture 429-3 Computer Systems Architecture. (Same as ECE 529) Principles of performance evaluation, processor microarchitecture, instruction-level parallelism, static and dynamic pipeline considerations. Superscalar processors. Multiprocessor systems. Memory hierarchy design, cache design. Mutual exclusion and synchronization mechanisms. Prerequisite: ECE 329 with a grade of C or better.

ECE430 - Systems Programming 430-4 Principles of Systems Programming. Introduction to concepts, techniques and tools to develop complex software to manage hardware resources. Operating system modules and interfaces, kernal development, process scheduling, dynamic memory control, device drivers. Design methodologies to meet system requirements specifications. Prerequisite: ECE 321 with a grade of C or better. Lab fee: $20 to help defray cost of equipment.

ECE431 - Cloud Computing 431-3 Cloud Computing. Cloud computing has evolved as a widely accepted and adopted computing model recently. This undergraduate course introduces the concepts, basic principles, overall structures, and key technologies of cloud computing, as well as several popular cloud computing services offered by major IT companies. In addition to the general cloud computing, the course is also featured by the introduction of MapReduce and Hadoop, which are the most popular programming model and platform for processing large amounts of data in parallel on cluster machines, respectively. The course work will include paper and literature review, presentations, assignments, and projects that will enable students to learn and use state-of-art cloud computing technologies and products. Amazon EC2 and Hadoop will be used for course projects, through which students will gain experience on how to deploy or build applications over computing clusters. Prerequisite: ECE 329 with a minimum grade of C or instructor consensus. Lab fee: $10 to help defray cost of equipment.

ECE432 - Program Multi-Core Processors 432-3 Programming for Multi-Core Processors. (Same as ECE 532) Multi-core architecture, threads, thread execution models, thread priority and scheduling, concurrency, multi-threaded programming models, synchronization, performance measurement and local balance, software tools for multi-threaded programming. Restricted to ECE students or consent of advisor. Prerequisite: ECE 222 with a grade of C or better. Lab fee: $20 to help defray cost of equipment.

processing and secure co-processor. Cloud, edge and IoT security. Prerequisite: ECE 315 with a C or better and consent of instructor.

ECE438 - Intro Medical Instrumentation 438-3 Introduction to Medical Instrumentation. (Same as BME 538 and ECE 538) This course introduces the students to the field of medical instrumentation. Medical instrumentation is the application of advanced engineering technology to problems in biology and medicine. The course will focus on fundamentals of instrumentation systems, sensors, amplifiers, and signal precondition. The course also will introduce biopotential measurement, biosensor, biomedical signal processing, and other related topics. Prerequisites: MATH 250, or consent of instructor. Lab fee: $45 to help defray cost of software licenses and equipment.

ECE440 - CMOS RF-IC Design 440-4 CMOS Radio-Frequency Integrated Circuit Design. (Same as ECE 535) Introduction of RF IC, passive RLC Networks, passive IC components, MOS Transistors, distributed systems, Smith Chart and S-Parameters, introduction to Band-width estimation, biasing and voltage reference, basic High Frequency Amplifiers, introduction to: noise in RF IC, Low Noise Amplifiers, Power Amplifiers, Phase-Locked Loops and Oscillators. Lecture and laboratory. Prerequisite: ECE 345, ECE 375 or equivalent. Lab fee: $35 to defray the cost of software licenses and equipment.

ECE441 - Photonics I 441-4 Photonics I. (Same as ECE 542) Ray optics, wave optics, beam optics, polarization of light, statistical optics, photons and atoms. Prerequisite: ECE 375 with a grade of C or better. Lab fee: $50 to help defray the cost of consumable items as well as maintaining or replacing the existing equipment.

ECE446 - Electronic Circuit Design 446-4 Electronic Circuit Design. (Same as ECE 546) Analysis and design of electronic circuits, both discrete and integrated. Computer-aided circuit design and analysis. Design of amplifier and filter circuits. Circuit stability analysis and frequency compensation techniques. Prerequisite: ECE 345 and ECE 355 with a grade of C or better or concurrent enrollment. Lab fee: $10 to help defray cost of software licenses and equipment.

ECE448 - Photonics II 448-4 Photonics II. (Same as ECE 544) Fourier optics, fiber optics, electro-optics, nonlinear optical media, acousto-optics, photonic switching, optical and interconnections and optical storage. Prerequisite: ECE 441 or consent of instructor. Lab fee: $80 to help defray the cost of consumable items as well as maintaining or replacing the existing equipment and also to cover the cost of two licenses for VPIPhotonics software.

ECE449 - VLSI Characterization 449-3 VLSI Material and Device Characterization. Materials for modern VLSI: semiconductor crystals, tubular and monolayer materials, organic materials, heterostructures, wafers and notations. Nanoscale fabrication processes: IC production flow, selective doping, nanolithography, etching, contacts and interconnects, spontaneous formation and ordering of nanostructures, fabrication of MEMS/NEMS systems, IC assembly and packaging. VLSI device characterization: electrical CV and IV profiling, defect characterization using DLTS, carrier mobility and lifetime measurements, optical microscopy and spectroscopy, particle beam and X-ray techniques. Reliability of devices and ICs: harsh environments, hot carriers, NBTI, electromigration, electrostatic discharge, IC power dissipation and cooling. Prerequisite: ECE 447 or ECE 423 or PHYS 425 with a grade of C or better or instructor consent.

ECE456 - Mechatronics/Embedded Control 456-4 Mechatronics and Embedded Control. (Same as ECE 561) Components of mechatronics systems, mathematical modeling, system identification, numerical tools for design and analysis, single-loop controller design, embedded systems, data acquisition and signal conditioning, sensors, actuators, networked control. This course includes lab session. Prerequisite: ECE 315 and ECE 356. Lab fee: $35.

ECE458 - Digital Image Processing I 458-3 Digital Image Processing I. (Same as ECE 558) Basic concepts, scope and examples of digital image processing, digital image fundamentals, image sampling and quantization, an image model, relationship between pixels, enhancement in the spatial domain, enhancement in the frequency domain, image segmentation, basics of color image processing. Prerequisite: ECE 355 or consent of instructor.

ECE459 - MEMS and Micro-Engineering 459-3 MEMS and Micro-Engineering. Introduction to micro-electro-mechanical systems (MEMS), manufacturing techniques, microsensors, microactuators, microelectronics and micro-controllers. Lecture and laboratory. Prerequisite: ECE 315 and ECE 356.

ECE460 - Principles of BME 460-2 Principles of Biomedical Engineering. (Same as BME 596, ECE 596) Principles of biomechanics, biomaterials, electrophysiology, modeling, instrumentation, biosignal processing, medical imaging, and biomedical optics. Not for credit towards the BS in Electrical or in Computer Engineering. Prerequisite: MATH 250 with a grade of C or better or consent of instructor.

ECE467 - Intro to Biomedical Imaging 467-4 Introduction to Biomedical Imaging. (Same as ECE 567 and BME 532) Biomedical imaging. X-ray imaging. Computed tomography (CT). Ultrasound. Magnetic resonance imaging (MRI). Image quality. Image reconstruction. Prerequisite: MATH 250 with a grade of C or better, or consent of instructor. Lab fee: $30 to help defray cost of software licenses and equipment.

ECE471 - Wireless Communication 471-3 Wireless Communication Systems. This course covers fundamentals of wireless communication systems. Topics include wireless system architectures, channel modeling, introduction to cellular systems, digital modulation and multiple-access techniques, introduction to multi-antenna techniques, performance analysis, wireless physical layer security, future trends in wireless communications. Prerequisite: ECE 315 and ECE 355 or consent of instructor. Restricted to enrollment in ECE program or consent of instructor. Project-based fee: $20 to help defray cost of software licenses.
ECE472 - Antennas I 472-4 Antennas I. (Same as ECE 575) Analysis, design, fabrication, measurement and CAD applied to basic antenna types. Fundamental parameters. Friis transmission equation. Impedance and pattern measurements. Resonant microstrip and wire antennas. Arrays and line sources. Lecture and Laboratory. Prerequisite: ECE 375. Lab fee: $120 to help defray cost of software licenses.

ECE474 - Speech Processing 474-3 Speech Processing. (Same as BME 533, ECE 533) This course introduces students to the rapidly developing field of speech processing. Fundamentals of speech production system, acoustic theory, signal analysis of speech, speech coding, speech synthesizing, and speech recognition algorithms. Prerequisites: MATH 250 and ECE 355 with grades of C or better or consent of instructor.

ECE476 - Intro to Info Theory 476-3 Introduction to Information Theory and Channel Coding. (Same as ECE 555) Entropy and Mutual Information. Channel Capacity. Gaussian Channel. Linear Block Codes. Convolutional Codes. Advance Channel Coding Techniques. Prerequisite: ECE 315 and ECE 355.

ECE478 - Communication Systems 478-4 Principles of Communication Systems. (Same as ECE 570) This course covers principles of communication systems. Topics include (1) representation of signals and systems, (2) amplitude modulation, (3) angle modulation, (4) probability theory and random processes for communication system designs, (5) transition from analog to digital and pulse code/delta modulation, (6) baseband digital transmission, (7) digital band-pass transmission techniques, (8) introduction to information theory and coding, (9) wireless channel modeling, (10) cellular systems and performance analysis. Restricted to enrollment in ECE program or consent of instructor. Lectures and laboratory projects. Prerequisites: ECE 315 and ECE 355 or consent of instructor.

ECE479 - Microwave Engineering I 479-4 Microwave Engineering I. (Same as ECE 562) Electromagnetic theory, analysis, design, fabrication, measurement and CAD applied to passive networks at microwave frequencies. Topics include: Transmission lines, Waveguides, Impedance matching, Tuning, Resonators, Scattering parameters, the Smith Chart. Lecture and Laboratory. Prerequisite: ECE 375. Lab fee: $100 to help defray cost of software licenses.

ECE481 - Wind & Solar Pwr Systems 481-3 Wind and Solar Energy Power Systems. (Same as ECE 581) This course introduces students to wind and solar energy power systems. Planning of wind generation; and operation of wind generators, mechanical and electrical design, power conditioning, control and protection. Planning, operation and design of electric solar plants; power conditioning, control and protection. Prerequisite: ECE 356 with a grade of C or better or equivalent.

ECE482 - Power Converter Design 482-3 Power Converter Design and Control. (Same as ECE 582) This course covers all the steps required for designing an actual power converter or electric drive system. The power stage design considerations, gate drive circuits, isolated high voltage/current measuring circuits, and application of a Texas Instrument Digital Signal Processor (DSP) for implementing different control schemes are discussed in detail. A brief introduction about the digital control theory and implementation of digital controller transfer functions using the DSP are provided as well. Prerequisite: ECE 356 with a grade of C or better. Lab fee: $65 to help defray cost of software licenses and equipment.

ECE483 - Electric Drive Systems 483-3 Electric Drive Systems. (Same as ECE 583) Course content is roughly 1/3 power electronics, 1/3 applied control and 1/3 electric machinery and focuses on analysis, simulation, and control design of electric drive based speed, torque, and position control systems. Advanced topics depending on the semester are taught. Prerequisite: ECE 356 with a grade of C or better. Lab fee: $65 to help defray cost of software licenses and equipment.
ECE484 - Electric and Hybrid Vehicles 484-3 Electric and Hybrid Vehicles. (Same as ECE 584) This course covers an entire range of topics related to analysis, design, control, and optimization of electric, hybrid, and plug-in hybrid power trains including automotive applications of adjustable speed motor drives, energy storage systems, and advanced power converters. Prerequisite: ECE 235 with a grade of C or better or instructor consent. Lab fee: $65 to help defray cost of software licenses and equipment.

ECE486 - Clean Electric Energy 486-3 Clean Electric Energy. History and future of energy resources and their use as a component of electrical systems. Fossil fuels and renewable energy sources. Environmental and economical impacts of various energy sources. Electric energy generating plants and distributed generation. Design of hybrid renewable energy systems. Prerequisite: ECE 385 with a grade of C or better.

ECE487 - Power Systems Analysis 487-3 Power Systems Analysis. Modeling and analysis of electric power systems. Topics covered: ac power, generators, power transformers, transmission line parameters and steady state operation, computation of power flows. The course uses power system analysis software. Lecture. Prerequisite: ECE 385 with a minimum grade of C.

ECE488 - Power System Engineering 488-3 Power System Engineering. (Same as ECE 588) The course covers topics involving the design and operation of a power system. Topics: symmetrical and unsymmetrical power system faults, power system protection design, transient stability of power generators, power system economic operation, power system control, transient operation of transmission lines. The course uses power system software. Lecture. Prerequisite: ECE 235 with a grade of C or better or consent of instructor.

ECE489 - Electric Power Distribution 489-3 Electric Power Distribution. (Same as ECE 589) Design of primary and secondary distribution networks. Load characteristics. Voltage regulation. Metering techniques and systems. Protection of distribution systems. Special topics related to power distribution. Prerequisite: ECE 235 with a grade of C or better.

ECE492 - Special Studies Electrical Eng 492-1 to 6 Special Studies in Electrical Engineering. Individual projects and problems selected by student or instructor. Open to seniors only. Not for graduate credit. Special approval needed from the instructor.

ECE493 - Special Topics Electrical Engr 493-1 to 4 Special Topics in Electrical Engineering. Lectures on topics of special interest to students in various areas of electrical engineering. Designed to test new and experimental courses in electrical engineering. Special approval needed from the instructor.

ECE494 - Biomedical Ultrasound 494-3 Biomedical Ultrasound. (Same as ECE 539 and BME 541) Diagnostic ultrasound is an ultrasound-based biomedical imaging technique used to visualize muscles, tissue, and many internal organs, to capture their size, structure and any pathological lesions. This course is an introduction to the principles and applications of biomedical ultrasound. This course will focus on fundamentals of acoustic theory, principles of ultrasonic detection and imaging, design and use of currently available tools for performance evaluation of diagnostic devices, and biological effects of ultrasound. Prerequisite: MATH 250 with a grade of C or better or consent of instructor.

ECE495C - CEGR Senior Design I 495C-3 Computer Engineering Senior Design I. Capstone Design part 1. Preparation for professional computer engineering practice with a major design experience based on earlier coursework, incorporating appropriate engineering standards and multiple constraints. Includes aspects of project development and design within a team such as communicating, documenting, establishing goals, planning tasks, meeting deadlines, analyzing risk and fulfilling responsibilities professionally and ethically. Not for graduate credit. Prerequisites: ECE 315, 321, 329, and 345 with grades of C or better. Restricted to senior standing in Computer Engineering. Lab fee: $50 to help defray cost of software licenses, equipment and consumable items.

ECE495D - ECE Senior Design II 495D-3 Electrical and Computer Engineering Senior Design II. Capstone Design part 2. Continuation of a major design experience based on earlier coursework, incorporating appropriate engineering standards and multiple constraints. Team approach in engineering projects. Work plan/time scheduling. Design options & cost-benefit analysis. Development of the final decision. Team coordination & documentation of team member efforts, design stages, team communication and team decision making processes. Implementation of the design (if the project warrants). Evaluation of the final product. Written, oral and poster presentation of final design. Not for
graduate credit. Prerequisite: ECE 495C or ECE 495E. Lab fee: $50 to help defray cost of software licenses, equipment and consumable items.

ECE495E - EE Senior Design I 495E-3 Electrical Engineering Senior Design I. Capstone Design part 1. Preparation for professional electrical engineering practice with a major design experience based on earlier coursework, incorporating appropriate engineering standards and multiple constraints. Includes aspects of project development and design within a team such as communicating, establishing goals, planning tasks, meeting deadlines, analyzing risk and fulfilling responsibilities professionally and ethically. Not for graduate credit. Prerequisites: ECE 327, 345, 356, 375 and 385 with grades of C or better. Restricted to senior standing in Electrical Engineering. Lab fee: $50 to help defray cost of software licenses, equipment and consumable items.

ECE496A - ECE Honors Reading 496A-3 Honors in Electrical and Computer Engineering-Honors Reading. Must be taken during the last two years of the undergraduate's career. Special approval needed from the department.

ECE496B - ECE Honors Research 496B-3 Honors in Electrical and Computer Engineering-Honors Supervised Research. Must be taken during the last two years of the undergraduate's career. Research culminating in an honors thesis for the University Honors Program. Prerequisite: ECE 496A or consent of department.

ECE498 - Biomedical Signal Analysis 498-3 Biomedical Signal Analysis. (Same as ECE 534, BME 536) The nature of biomedical signals. Memory and correlation. Impulse response and frequency response of biomedical signals. Modeling continuous-time and discrete-time biomedical signals. Noise removal and biomedical signal compensation. Prerequisites: MATH 250, ECE 355 with grades of C or better, or consent of instructor.

Electrical Engineering Faculty

Ahmed, Shaikh, Professor, Ph.D., Arizona State University, 2005.
Anagnostopoulos, Iraklis, Assistant Professor, Ph.D., National Technical University of Athens, 2014.
Aruna Baduge, Gayan, Assistant Professor, Ph.D., University of Alberta, 2013, 2016.
Asrari, Arash, Assistant Professor, Ph.D., University of Central Florida, 2015.
Bae, Chilman, Assistant Professor, Ph.D., Pennsylvania State University, 2009.
Botros, Nazeih, Professor, Emeritus, Ph.D., University of Oklahoma, 1985.
Brown, David P., Professor, Emeritus, Ph.D., Michigan State University, 1961.
Chen, Kang, Assistant Professor, Ph.D., Clemson University, 2014.
Chen, Ying, Associate Professor, Ph.D., Duke University, 2007.
Daneshdoost, Morteza, Professor, Emeritus, Ph.D., Drexel University, 1984.
Gupta, Lalit, Professor, Ph.D., Southern Methodist University, 1986.
Haniotakis, Themistoklis, Associate Professor, Ph.D., University of Athens, 1998.
Harackiewicz, Frances J., Professor, University of Massachusetts at Amherst, 1990.
Hatzidouliu, C., Professor, Ph.D., West Virginia University, 1988.
Kagaris, Dimitrios N., Professor, Ph.D., Dartmouth College, 1994.
Komae, Arash, Assistant Professor, Ph.D., University of Maryland, College Park, 2008.
Lu, Chao, Assistant Professor, Ph.D., Purdue University, 2012.
Osborne, William P., Professor, Emeritus, Ph.D., New Mexico State University, 1970.
Phegley, James, Senior Lecturer, Ph.D., Southern Illinois University, 2001.
Pourboghrat, Farzad, Professor, Emeritus, Ph.D., University of Iowa, 1984.
Qin, Jun, Associate Professor, Ph.D., Duke University, 2008.
Sayeh, Mohammad, Professor, Ph.D., Oklahoma State University, 1985.
Singh-Gupta, Vidya, Senior Lecturer, Ph.D., Southern Illinois University, 1988.
Smith, James G., Professor, Emeritus, Ph.D., University of Missouri at Rolla, 1967.
Tragoudas, Spyros, Professor and Chair, Ph.D., University of Texas, Dallas, 1991.
Viswanathan, R., Professor, Emeritus, Ph.D., Southern Methodist University, 1983.
Wang, Haibo, Professor, Ph.D., University of Arizona, 2002.
Weng, Ning, Professor, Ph.D., University of Massachusetts, 2005.
Catalog Year Statement:
Students starting their collegiate training during the period of time covered by this catalog (see bottom of this page) are subject to the curricular requirements as specified herein. The requirements herein will extend for a seven calendar-year period from the date of entry for baccalaureate programs and three years for associate programs. Should the University change the course requirements contained herein subsequently, students are assured that necessary adjustments will be made so that no additional time is required of them.