Mathematics

Opportunities for mathematics majors have expanded greatly in recent years. Mathematics majors become actuaries, statisticians, mathematical computer scientists, applied mathematicians, operations research analysts and mathematical researchers. Mathematics is growing and changing and holds fascinating challenges for inquiring minds.

As an undergraduate mathematics major at Southern Illinois University Carbondale, you may work toward a Bachelor of Science degree in the School of Mathematical and Statistical Science or the School of Education. The classes in the mathematics major curriculum are small and are taught by senior faculty members. A strong support system of college and program advisement is available to you at SIU throughout the year.

A student planning for employment with a bachelor’s degree should consider a minor or a second major in some field in which mathematics is applied. Many students earn a double major in mathematics and computer science. All of the bachelor’s degree programs in mathematics, including the Bachelor of Science degree in the School of Education, have sufficient flexibility to allow you to prepare for alternate career possibilities.

To prepare to major in mathematics at SIU, you should have a solid high school preparation in algebra, geometry in two and three dimensions, and trigonometry, including a substantial study of functions and graphing. Students transferring to SIU after two years at a community college should have completed the calculus sequence, linear algebra and a course in a high-level computer programming language.

As a mathematics major at SIU, you will meet with a School of Mathematical and Statistical Science advisor at least once each semester for planning and departmental approval of courses appropriate to your goals and interests.

A grade of C or better is required in every mathematics course used to satisfy departmental requirements. A student cannot repeat a course or its equivalent in which a grade of B or better was earned without the consent of the department. A math major is required to obtain the permission of the department for a second repeat (third attempt) of a course that is required or elective for the major.

Double majors in mathematics and related fields

Special provisions are made for students to earn a double major in mathematics and a field in which mathematics is extensively applied. The courses MATH 447, MATH 449, MATH 471, MATH 472, and MATH 475 carry credit in both mathematics and computer science. See Bachelor of Science Degree, School of Mathematical and Statistical Science for specific requirements in mathematics for students who also earn a major or minor in computer science.

For students pursuing a double major in math and engineering, physics, or chemistry, the mathematics requirements are MATH 150 or MATH 151, MATH 221, MATH 250, MATH 251, MATH 305 and five additional mathematics courses numbered above 300, including at least three courses above 400, and including two of the three areas of algebra, analysis, probability and statistics. A School of Mathematical and Statistical Science advisor must approve the courses.

Students majoring in business may obtain a second major in Mathematics. The requirements are MATH 150 or MATH 151, MATH 221, MATH 250, MATH 251, and five approved mathematics courses at the 300-400 level, of which at least four are at the 400-level. Recommended courses for this program include MATH 471, MATH 472, MATH 475, MATH 483, MATH 484.
Option in Statistics

A student majoring in Mathematics in the School of Mathematical and Statistical Science may choose to concentrate in statistics. For this option, the 300- and 400-level course requirements include: MATH 302; either MATH 417 or MATH 421; either MATH 305 or MATH 472; one of MATH 352, MATH 450, or MATH 455; MATH 480; MATH 483; at least two of MATH 473, MATH 481, MATH 484, MATH 485 and one additional approved upper division Mathematics course.

Bachelor of Science (B.S.) in Mathematics (School of Mathematical and Statistical Sciences) Degree Requirements

<table>
<thead>
<tr>
<th>Degree Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Curriculum Requirements</td>
<td>39</td>
</tr>
<tr>
<td>School of Mathematical and Statistical Science Academic Requirements</td>
<td>12</td>
</tr>
<tr>
<td>Biological Sciences: six hours (not University Core Curriculum courses) (Three hours included in the UCC Life Science hours)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics: completed with the major Physical Sciences: six hours (not University Core Curriculum courses) (Three hours included in the UCC Life Science hours)</td>
<td>3</td>
</tr>
<tr>
<td>Supportive Skills: a two-semester sequence in a foreign language, or three years of one foreign language in high school with no grade lower than C</td>
<td>6</td>
</tr>
<tr>
<td>Requirements for Major in Mathematics</td>
<td>42</td>
</tr>
<tr>
<td>MATH 150 or MATH 151, MATH 221, MATH 250, MATH 251 (Three hours included in UCC mathematics hours)</td>
<td>11</td>
</tr>
<tr>
<td>CS 202 or approved substitute</td>
<td>4</td>
</tr>
<tr>
<td>MATH 302</td>
<td>3</td>
</tr>
<tr>
<td>At least one course from each of the following groups</td>
<td>12</td>
</tr>
</tbody>
</table>

(One group may be waived for students with a minor in CS)

Group A: Algebra/Discrete Math/Linear Algebra:
MATH 319, MATH 349, MATH 419, MATH 421

Group B: Analysis:
MATH 352, MATH 450, MATH 455

At least two, from different groups, of the following:

Group C: Applied Math/Numerical Analysis:
MATH 305, MATH 471, MATH 472, MATH 475

Group D: Probability/Statistics:
MATH 380, MATH 480, MATH 483

Group E: Geometry:
MATH 335, MATH 433
Degree Requirements

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

Four additional courses in mathematics numbered above MATH 299 (excluding MATH 300I, MATH 311A, MATH 311B, MATH 321, MATH 322, MATH 388, MATH 389, MATH 411, MATH 412)

A minimum of five 400-level math courses must be taken. Each student’s program must be approved by a mathematics department advisor. Courses taken Pass/Fail will not count toward the major.

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
</tr>
</tbody>
</table>

The student must work with the Advisement Office to ensure that SIU’S 42 Senior-Hours requirement is met by appropriate choices of core, college, major and elective coursework.

Actuarial Mathematics Specialization

Students pursuing the Bachelor of Science degree with a major in mathematics in the School of Mathematical and Statistical Science may choose to specialize in Actuarial Mathematics. Actuaries put a price on risk, and Actuaries are often ranked as a top ten job with high pay. The Actuarial program at Southern Illinois University provides course work in Mathematics to prepare students for work as Actuaries. Students become Actuaries by taking two Validation by Educational Experience (VEE) course sequences and by passing professional examinations given by the Society of Actuaries (SOA, see www.soa.org) and Casualty Actuarial Society (CAS, see www.casact.org). The professional exams cover probability, financial mathematics for investments including interest theory and financial derivatives, life contingencies: mathematics for life insurance, and loss models. More information about Actuaries and the professional exams can be found at www.beanactuary.com.

Freshmen admitted to the program should have at least a 24 Math ACT score. Students can also enroll as Math majors and transfer to the Actuarial program after receiving a C or higher in Math 250. The program offers preparation for four Actuarial exams and for the two VEE course sequences. Students are required to complete two VEE course sequences are encouraged to pass Exam P/1 and FM/2.

B.S. Mathematics - Actuarial Mathematics Specialization Degree Requirements

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
</tr>
</tbody>
</table>

University Core Curriculum Requirements

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

To include MATH 150 or MATH 151, ECON 240, MATH 300I and FL.

College of Science Academic Requirements

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

Biological Sciences: six hours (not University Core Curriculum courses) (Three hours included in the UCC Life Science hours)
<table>
<thead>
<tr>
<th>Degree Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics: completed with the major Physical Sciences: six hours (not University Core Curriculum courses) (Three hours included in the UCC Life Science hours)</td>
<td>3</td>
</tr>
<tr>
<td>Supportive Skills: a two-semester sequence in a foreign language, or three years of one foreign language in high school with no grade lower than C</td>
<td>6</td>
</tr>
</tbody>
</table>

Requirements for Actuarial Specialization

- (MATH 150), MATH 221, MATH 250, MATH 251 (Three hours included in UCC mathematics hours) 11
- CS 202 or approved substitute 4
- MATH 302 and MATH 483 7
- At least one course from each of the following groups 9
 - Group A: Algebra/Discrete Math/Linear Algebra: MATH 319, MATH 349, MATH 421
 - Group B: Analysis: MATH 352, MATH 450, MATH 455
 - Group C: Applied Math/Numerical Analysis: MATH 305, MATH 471, MATH 472, MATH 475
 - MATH 400, MATH 474, and MATH 484 10
 - Either MATH 401 and MATH 402 or MATH 403 and MATH 404 6
- Additional courses required for VEE examinations:
 - ECON 240 (if not already included in Core) and ECON 241 6
 - FIN 330 and FIN 361 6
 - Accounting courses required as prerequisites for FIN 330
 - ACCT 220, ACCT 230 9
- Electives if needed to make a total of 120 hours 4-7

Total 120
Data Science Specialization

Students pursuing the Bachelor of Science degree with a major in mathematics in the School of Mathematical and Statistical Science may choose to specialize in Data Science. Data scientists are among the most sought-after professionals in America, with the advent of ubiquitous data sources on all aspects of life. Business, industry, non-profits, and governments at all levels are being transformed by large data sets and their analysis.

B.S. Mathematics - Data Science Specialization Degree Requirements

<table>
<thead>
<tr>
<th>Degree Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Curriculum Requirements</td>
<td>39</td>
</tr>
<tr>
<td>College of Science Academic Requirements</td>
<td>12</td>
</tr>
<tr>
<td>Requirements for Math Major with Data Science Specialization</td>
<td>61</td>
</tr>
<tr>
<td>MATH 150, MATH 221, MATH 250, MATH 251</td>
<td>11</td>
</tr>
<tr>
<td>(Three hours included in UCC mathematics)</td>
<td></td>
</tr>
<tr>
<td>CS 202</td>
<td>4</td>
</tr>
<tr>
<td>MATH 302, MATH 349, MATH 421, MATH 483, and MATH 492</td>
<td>16</td>
</tr>
<tr>
<td>At least one course from each of the following groups</td>
<td>6</td>
</tr>
<tr>
<td>Group B: Analysis: MATH 352, MATH 450, MATH 455</td>
<td></td>
</tr>
<tr>
<td>Group C: Applied Math/Numerical Analysis: MATH 305, MATH 471, MATH 472, MATH 475</td>
<td></td>
</tr>
<tr>
<td>At least two of MATH 473, MATH 474, MATH 480, MATH 484, MATH 485, MATH 486</td>
<td>6</td>
</tr>
<tr>
<td>Eighteen additional hours selected from the following technical electives, at least twelve hours of which are at the 400-level. The courses counted toward this requirement must be approved by the mathematics program</td>
<td></td>
</tr>
<tr>
<td>Technical Elective options are:</td>
<td></td>
</tr>
<tr>
<td>CS 220 Programming with Data Structures</td>
<td></td>
</tr>
<tr>
<td>CS 330 Intro Design and Analysis of Algorithms</td>
<td></td>
</tr>
<tr>
<td>CS 430 Database Systems</td>
<td></td>
</tr>
<tr>
<td>CS 434 Learning From Data</td>
<td></td>
</tr>
<tr>
<td>CS 438 Bioinformatics</td>
<td></td>
</tr>
<tr>
<td>ECE 476 Information Theory</td>
<td></td>
</tr>
<tr>
<td>GEOG 401 Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td>GEOG 404 Spatial Analysis</td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Science (B.S.) in Mathematics (School of Education)

Admission into the Teacher Education Program requires a 2.5 average in MATH 150 or MATH 151, MATH 221, MATH 250; and MATH 251 or MATH 305 in addition to School of Education requirements for admission to the TEP.

Retention in the Teacher Education Program and approval for student teaching requires a 2.75 average in the major and departmental approval.

Mathematics majors are required to meet with a school advisor for approval of their courses prior to registering each semester.

B.S. Mathematics (School of Education) Degree Requirements

<table>
<thead>
<tr>
<th>Degree Requirements</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Curriculum Requirements to include ENGL 101 & ENGL 102, PSYC 102, MATH 300I, EDUC 311, EDUC 314</td>
<td>39</td>
</tr>
<tr>
<td>Requirements for major in Mathematics</td>
<td>46</td>
</tr>
<tr>
<td>Content Courses</td>
<td>40</td>
</tr>
<tr>
<td>MATH 150 or MATH 151, MATH 221, MATH 250, and MATH 251 or MATH 305 (Three hours included in UCC mathematics hours)</td>
<td>11</td>
</tr>
<tr>
<td>Degree Requirements</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>CS 202 or approved substitute</td>
<td>4</td>
</tr>
<tr>
<td>MATH 302, MATH 319, MATH 335, MATH 349, MATH 352, MATH 433, MATH 483</td>
<td>19</td>
</tr>
<tr>
<td>At least two additional approved 400-level mathematics courses excluding MATH 411, MATH 412</td>
<td>6</td>
</tr>
<tr>
<td>Methods Course, MATH 311A, MATH 311B</td>
<td>6</td>
</tr>
<tr>
<td>Professional Education and Licensure Requirements</td>
<td>24</td>
</tr>
<tr>
<td>EDUC 301, EDUC 302, EDUC 303, EDUC 308, EDUC 313, EDUC 319, EDUC 401A Other requirements for licensure CI 360</td>
<td>3</td>
</tr>
<tr>
<td>Electives to make 120 hours</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>120</td>
</tr>
</tbody>
</table>

Mathematics Minor

A non-teaching minor consists of MATH 150 or MATH 151 and 12 hours of mathematics courses at the 200 level or above, including at least three hours at the 400 level (excluding MATH 220, MATH 257, MATH 282, MATH 300I, MATH 311A, MATH 311B, MATH 321, MATH 322, MATH 388, MATH 389, MATH 411, MATH 412). All courses used for the minor must be completed with a grade of C or better. The 400-level mathematics courses must be taken at SIU Carbondale. The departmental advisor must approve the student’s minor program.

Additional Educator Endorsements in Mathematics

Students pursuing a teaching license in another discipline and interested in adding an endorsement in Mathematics should see a School of Mathematical and Statistical Science advisor to obtain a list of specific requirements.

Honors

MATH 395 and MATH 495 are used for individual honors work for upper level undergraduates in mathematics. Concurrent participation in the University Honors Program is encouraged.

Placement

In addition to having taken the prerequisite mathematics courses, students are required to present a satisfactory placement score as a condition for registration in mathematics courses. Contact the School of Mathematical and Statistical Science for current information regarding placement.

Mathematics Courses

MATH101 - Intro to Contemporary Math

101-3 Introduction to Contemporary Mathematics. (University Core Curriculum Course) [IAI Course: M1 904] Elementary mathematical principles as they relate to a
variety of applications in contemporary society. Exponential growth, probability, geometric ideas and other
topics. This course does not count towards the major in mathematics. Prerequisite: MATH 107 with a
grade of C or better or high school Geometry and Algebra 2 with a grade of C or better, and satisfactory
placement score.

MATH102 - Basics of Data Science 102-3 Basics of Data Science. (University Core Curriculum) This
course addresses the fundamental challenge of how to extract information from data. It focuses on a set
of problems from statistics and data science such as describing the relationship between observations,
testing hypotheses, estimating confidence, and prediction. Prerequisite: High School Algebra, some
computer experience.

MATH105 - College Algebra for Teachers 105-3 College Algebra and Mathematical Modeling for
Teachers. A course in college algebra designed for the pedagogical and content needs of K-8 teachers.
Equations and inequalities involving linear, polynomial, rational, absolute value, exponential and
logarithmic functions, and systems of linear equations; the algebra of functions (polynomials, rational,
exponential, logarithmic), graphing functions; domain and range. Conic sections. Modeling and solving
real-world problems and situations. Use of technology as appropriate to interpret data and create
mathematical models. Core Standards Mathematical Practices will be infused throughout. No credit
may be earned for MATH 105 if there is prior credit in MATH 106, 108 or 111. Prerequisite: Satisfactory
placement score OR MATH 220 with a grade of C or better.

MATH106 - College Algebra Enhanced 106-3 College Algebra Enhanced. (University Core Curriculum)
The course leads students through an intensive review of foundational algebra concepts followed by a
careful study of functions (polynomial, rational, exponential, logarithmic), graphing, solving equations
including systems. Two lecture and three lab hours per week. Credit is given for only one of MATH 106,
108, 111. Prerequisite: Three years of college preparatory mathematics including Algebra I, Geometry
and Algebra II AND satisfactory placement score. Digital Course Materials and CAI (Computer Aided
Instruction) Fee: $90.

MATH108 - College Algebra 108-3 College Algebra. (University Core Curriculum Course) The algebra
of functions (polynomials, rational, exponential, logarithmic), graphing, conic sections, solving equations
including systems. Not open to students with prior credit in MATH 106 or MATH 111. Prerequisite: Three
years of college preparatory mathematics including Algebra I, Geometry and Algebra II AND satisfactory
placement score. $60 course fee will cover additional instruction. Additional supplemental software is
required. Platform is used for assessment and online access to learning aids and e-textbook.

MATH109 - Trig & Analytic Geometry 109-3 Trigonometry and Analytic Geometry. (University Core
Curriculum Course) Trigonometric and inverse trigonometric functions, complex numbers, conic sections,
polar coordinates. Credit is not given for both MATH 109 and 111. Prerequisites: MATH 108 or MATH 106
or equivalent, with C or better. New students must present satisfactory placement scores.

MATH110 - Non-Technical Calculus 110-3 Non-Technical Calculus. (University Core Curriculum)
The elements of differentiation and integration. The emphasis is on the concepts and the power of the
calculus rather than on technique. It is intended to provide an introduction to calculus for non-technical
students. Does not count towards the major in mathematics. No credit hours may be applied to fulfillment
of any degree requirements if there is prior credit in Mathematics 140, 141, 150, or 151. Prerequisite: 3
years of college preparatory mathematics including algebra I, algebra II and geometry with C or better.
Students must present satisfactory placement scores or obtain the permission of the Department of
Mathematics.

MATH111 - Precalculus 111-4 Precalculus. (University Core Curriculum Course) Intensive review
of college algebra and trigonometry necessary for Calculus I. Algebra of rational and transcendental
functions, graphing, trigonometric identities, laws of sines and cosines, conics, complex numbers, polar
coordinates. Not open to students with credit in 106, 108 or 109. Prerequisites: High school advanced
algebra and trigonometry with at least C and satisfactory placement score.

MATH120 - Math for Elem School I 120-3 Mathematics Content and Methods for Elementary School I.
(Same as CI 120) Modern approaches to mathematics instruction for the elementary grades. Mathematics
content includes problem solving, intuitive set theory, development of whole numbers, integers and
rational numbers and the fundamental arithmetic operations. Place value. Prime numbers and divisibility
properties. Computation includes students’ informal mathematics, mental computation and estimation,
algorithms and the appropriate use of calculators. Emphasis is placed throughout on reasoning, multiple representations of mathematical concepts, making connections and communication. Three hours lecture/laboratory per week. Prerequisite: Three years of college preparatory mathematics including Algebra I, Algebra II and Geometry and satisfactory placement score.

MATH125 - Tech Math with Applications 125-4 Technical Mathematics with Applications. (University Core Curriculum) Emphasizes the applications of algebra, geometry, and trigonometry in technical fields. Topics in algebra include unit conversion, functions and graphs, systems of linear equations, quadratic equations, higher degree equations, and variation. Topics in geometry include Pythagorean Theorem and area and volume calculations. Topics in trigonometry include the trigonometric functions, laws of sines and cosines, radian angle measurement, and some vector operations. Meets University Core Curriculum requirement in mathematics for Applied Sciences and Arts students.

MATH139 - Finite Mathematics 139-3 Finite Mathematics. (University Core Curriculum Course) Set concepts and operations, combinations, permutations, elementary probability theory including Bayes Formula, linear systems of equations, matrix algebra, row reduction, introduction to linear programming and simplex method. This course does not count toward the major in mathematics. Prerequisite: MATH 108 with grade of C or better or satisfactory placement score. Satisfies UCC Mathematics in lieu of 110 or 101.

MATH140 - Short Course in Calculus 140-4 Short Course in Calculus. (University Core Curriculum Course) Techniques of differentiation, increasing and decreasing functions, curve sketching, max-min problems in business and social science; partial derivatives; LaGrange multipliers; elementary integration techniques. Not open to students with prior credit in 141, 150, or 151. Does not count toward the major in mathematics. Prerequisite: MATH 108 with grade of C or better or satisfactory placement score. Satisfies University Core Curriculum Mathematics requirement in lieu of 110 or 101. Platform is used for assessment and online access to learning aids and e-textbook.

MATH141 - Calculus for Biological Sci 141-4 Short Course in Calculus for Biological Sciences. (University Core Curriculum Course) [IAI Course: M1 900-0] Techniques of differentiation and integration. Applications to population and organism growth and other biological science problems. Not open to students with prior credit in 150, 151 or 140. Does not count toward the major in mathematics. Prerequisite: High school advanced algebra and trig or MATH 111 or 108 plus 109 with C or better, AND satisfactory placement score. Satisfies University Core Curriculum Mathematics requirement in lieu of 110 or 101.

MATH150 - Calculus I 150-4 Calculus I. (University Core Curriculum course) [IAI Course: MTH 901] [IAI Course: M1 900-1] Major concepts and techniques of single variable calculus with careful statements but few proofs. Differential and integral calculus of the elementary functions; analytic geometry. Only 2 hours credit toward graduation if there is prior credit in 140 or 141. Prerequisite: High school advanced algebra and trig or MATH 111 or 108 plus 109 with C or better, AND satisfactory placement score. Satisfies University Core Curriculum Mathematics requirements in lieu of 110 or 101.

MATH150H - Honors Calculus I 150H-4 Honors Calculus I. (University Core Curriculum course) Treatment of the major concepts and techniques of single variable calculus, with careful statements, detailed computations, various applications, and some proofs. Differential and integral calculus of the elementary functions with associated analytic geometry. If there is prior credit in 140, 117, or 141, only 2 hours credit for 150 may be applied to graduation requirements. Prerequisite: MATH 111 or equivalent with a grade of C or better. New students must present satisfactory placement score or obtain the permission of the department of mathematics.

MATH151 - Calculus I Enhanced 151-4 Calculus I Enhanced. (University Core Curriculum course) [IAI Course: MTH 901] This course leads students through an intensive review of foundational algebra and trigonometry concepts followed by a careful study of major concepts and techniques of single variable calculus with careful statements but few proofs. Differential and integral calculus of the elementary functions; analytic geometry. Only 2 hours credit toward graduation if there is prior credit in 140 or 141. Credit is given for only one of MATH 150, 151. Prerequisite: High school advanced algebra and trigonometry AND satisfactory placement score, OR MATH 111 or 108 plus 109 with at least C. Additional Instruction Lab fee: $90.
MATH220 - Math Content Elem School II 220-3 Mathematics Content and Methods for the Elementary School II. (University Core Curriculum Course) (Same as CI 220) Modern approaches to mathematics instruction for the elementary grades. Mathematics content focuses on (1) Algebra: rational and irrational numbers, ordering of numbers, decimal representations, percents, ratio and proportion, perimeter and area concepts, Pythagorean Theorem, concept of square root and nth root, exponent notation; (2) Geometry: triangles, quadrilaterals, polygons, angles associated with a polygon, reflectional and rotational symmetry, congruence and similarity, tessellations; (3) Transformations: translations, rotations, reflections; (4) Measurements: perimeter, area, surface area, volume, mass, temperature, and conversion of measurements. Emphasis is placed on mathematical reasoning, multiple representations, making connections, and communication.

MATH221 - Intro to Linear Algebra 221-3 Introduction to Linear Algebra. Vector spaces, linear functions, systems of equations, dimensions, determinants, eigenvalues, quadratic forms. Prerequisite: MATH 150 or MATH 151 with a grade of C or better.

MATH250 - Calculus II 250-4 Calculus II. (University Core Curriculum Course) [IAI Course: MTH 902] [IAI Course: M1 900-2] Develops the techniques of single-variable calculus begun in Calculus I and extends the concepts of function, limit, derivative and integral to functions of more than one variable. The treatment is intuitive, as in Calculus I. Techniques of integration, introduction to multivariate calculus, elements of infinite series. Prerequisite: MATH 150 or MATH 151 with C or better. Satisfies University Core Curriculum Mathematics requirement in lieu of 110 or 101.

MATH251 - Calculus III 251-3 Calculus III. (University Core Curriculum Course) [IAI Course: M1 900-3] [IAI Course: MTH 903] Further topics in calculus. Definite integrals over solid regions, applications of partial derivatives, vectors and vector operations, derivatives of vector functions, line integrals, Green's Theorem. Prerequisite: MATH 250 with C or better. Satisfies University Core Curriculum Mathematics requirements in lieu of 110 or 101.

MATH257 - Concurrent Work Experience 257-1 to 12 Concurrent Work Experience. As an instructional aide, the student will do tutoring under the direction of an established teacher and under the supervision of a representative of the Department of Mathematics. Special approval needed from the department. Mandatory Pass/Fail.

MATH282 - Intro to Statistics 282-3 Introduction to Statistics. (University Core Curriculum) Designed to introduce beginning students to basic concepts, techniques, and applications of statistics. Topics include the following: organization and display of data, measures of location and dispersion, elementary probability, statistical estimation, and parametric and nonparametric tests of hypotheses. Prerequisite: MATH 108 with C or better, or satisfactory placement score. Satisfies University Core Curriculum Mathematics requirement in lieu of 110 or 101.

MATH300I - History of Mathematics 300I-3 History of Mathematics. (University Core Curriculum) This course examines how diverse cultures and history from the ancient past to the present have shaped the development of mathematical thought and how developing mathematical ideas have influenced history and society. Particular attention will be given to the evolution of the concepts of number and space; the emergence and applications of calculus, probability theory, non-Euclidean geometries and technology; and to the changes in the concept of mathematical rigor. Does not count towards the mathematics requirements of the mathematics major. Open to all students. Prerequisite: MATH 150 or MATH 151.

MATH302 - Transition to Higher Math 302-3 Mathematical Communication and the Transition to Higher Mathematics. A course in communicating mathematical ideas with a special emphasis on reading, writing, and critiquing mathematical proofs. Topics covered include logic, proofs, set theory, relations, functions. Additional illustratory topics will be drawn from linear algebra, number theory, complex variables, and geometry. Prerequisite: MATH 221 and MATH 250 with a grade of C or better.

MATH305 - Intro Differential Equations 305-3 Introduction to Differential Equations. [IAI Course: MTH 912] First-order equations (including initial value problems, basic numerical methods, existence and uniqueness of solutions, separable equations, linear equations, exact equations, substitution methods and applications). Higher-order equations (including the general solution to homogeneous linear equations, linear independence, method of undetermined coefficients, the general solution to linear non-
homogeneous equations, variation of parameters, and applications). Power series solutions. Partial differential equations and Fourier series. Prerequisite: MATH 250 with a grade of C or better.

MATH311A - Teaching Secondary Math I 311A-3 Teaching of Secondary Mathematics I. The nature and objectives of the standards-based secondary mathematics curriculum, particularly the means of introducing new ideas into the high school program. An important focus will be state and national teaching and learning standards and the use of technology. Heavy emphasis will be placed on development of formative and summative assessment measures and the use of such assessments in planning future instruction and remediation. For students preparing to be secondary mathematics teachers. Does not count toward a mathematics major in the Colleges of Liberal Arts or Science. Prerequisites: EDUC 313, EDUC 301 and MATH 349, MATH 335 or MATH 433, and MATH 352 with grades of C or better. Concurrent enrollment in MATH 335 or MATH 433 and MATH 352 is permissible.

MATH311B - Teaching Secondary Math II 311B-3 Teaching of Secondary Mathematics II. The nature and objectives of the standards-based secondary mathematics curriculum, particularly the means of introducing new ideas into the high school program. An important focus will be state and national teaching and learning standards and the use of technology. Emphasis in part II will be on the development of a complete curriculum, understanding the secondary curriculum as a dynamic system and the use of standardized testing to adjust curriculum and remediate students. Must be taken in A-B sequence. For students preparing to be secondary mathematics teachers. Does not count toward a mathematics major in the Colleges of Liberal Arts or Science. Prerequisite: MATH 311A with a grade of C or better and MATH 319. Concurrent enrollment in MATH 319 permissible.

MATH318 - Intro to Math Software 318-2 An Introduction to Mathematics Software. This course is an introduction to the use of Maple, a modern computer algebra system, as a computational and experimental tool in mathematics. The preparation of reports using text, graphics and mathematics is emphasized. Topics will include: solving equations, plotting techniques, special packages, programming with Maple V. Prerequisite: MATH 150 or MATH 151 with B or better or MATH 250 with C or better.

MATH319 - Intro Abstract Algebra I 319-3 Introduction to Abstract Algebra I. Basic properties of groups and rings: Binary operations, groups, subgroups, permutations, cyclic groups, isomorphisms, Cayley's theorem, direct products, cosets, normal subgroups, factor groups, homomorphisms, rings, integral domains. Prerequisite: MATH 302 with C or better.

MATH322 - Math for Elem School IV 322-3 Mathematics Content and Methods for the Elementary School IV. (Same as CI 322) Modern approaches to mathematics instruction for the elementary grades. Mathematics content focuses on: algebra and algebraic thinking, geometry, relations and functions and their applications to real-life problems. Emphasis is placed throughout on reasoning, multiple representations of mathematical concepts, making connections and communication. Prerequisite: MATH 321 or Curriculum and Instruction 321 with a grade of C or better.

MATH335 - Concepts of Geometry 335-3 Concepts of Geometry. Introduction to the foundations of Euclidean and non-Euclidean geometries. Topics include synthetic approach (Euclidean geometry, axiomatic systems, constructions, proofs), symmetries (similarly, congruence and various transformations and their invariants), metric approach (distance), vector space approach (transformations and matrices, inner product), inversive geometry, projective geometry (art and math) and non-Euclidean geometries. Some applications in modern science, such as Relativity Theory, may also be covered. Historical
background and connections with other parts of mathematics, science and culture are important components of this course. Prerequisite: MATH 250 with C or better, or MATH 302 with C or better or concurrent enrollment in MATH 302.

MATH349 - Intro to Discrete Math 349-3 Introduction to Discrete Mathematics. Numbers, sets, relations and functions; elementary enumeration; introduction to graph theory; logic, partially ordered sets and Boolean algebra; mathematical induction; recurrence relations. Prerequisite: MATH 221 and MATH 250 with C or better; Co-requisite: MATH 302 or prior completion of MATH 302.

MATH352 - Theory of Calculus 352-3 Theory of Calculus. An introduction to understanding and writing proofs in mathematical analysis, through a careful study of limits, continuity, the derivative, and the integral. Prerequisite: MATH 302 with C or better.

MATH388 - Int Math Content & Methods P-4 388-3 Integrated Math Content and Methods for Teachers (PreK-4th Grade). (Same as CI 388) This course is designed for early childhood and elementary school teachers, focusing on Pre-K through 4th grade mathematics content and methods. Math content covers the developmental progression of concepts and skills in counting and cardinality, numbers and operations in base-ten system, algebraic thinking, fractional reasoning, measurement and data, and geometry. Methods of math teaching are integrated with the delivery of math content. The course showcases standards-based mathematical practices including problem solving, mathematical modeling, communication and justification, use of tools and technology, assessment and interventions, diverse learner support, supportive math environments, lesson planning, and interdisciplinary connections. Prerequisite: C or better in CI/MATH 220 or equivalent.

MATH389 - Int Math Content/Methods 4-8 389-3 Integrated Math Content and Methods for Teachers (4th-8th Grade). (Same as CI 389) This course is designed for elementary school and middle school teachers, focusing on 4th-8th grade mathematics content and methods. Math content covers the development sequence of grade-appropriate mathematical concepts and skills in number systems, operations and algebraic thinking, ratios and proportional relationships, expressions and equations, functions and applications, measurement and data analysis, statistics and probability, and geometry. Methods of math teaching are integrated with the delivery of math content. The course showcases standards-based mathematical practices including problem solving, mathematical modeling, communication and justification, use of tools and technology, informative assessment, meeting the needs of diverse learners, building supportive math environments, lesson planning, and making interdisciplinary connections. Prerequisite: CI/MATH 388 with a minimum grade of C. Co-requisites: EDUC 319 and EDUC 302.

MATH390 - Topics in Contemporary Math 390-3 to 6 Topics in Contemporary Mathematics. Content will vary according to the instructor. The seminar will introduce students to new and developing areas of mathematics, such as Chaos, Fractals, Algorithms, Fourier Analysis, Difference Equations, etc. Prerequisite: intended for students who have completed Mathematics 150 or 151, 221, 250 and either 251 or 305.

MATH395 - Readings in Mathematics 395-1 to 6 Readings in Mathematics. Supervised reading in selected subjects. Prerequisite: 3.00 grade point average in mathematics. Special approval needed from the chair.

MATH400 - Interest Thry Fin Derivatives 400-4 Interest Theory and Financial Derivatives. This course examines financial mathematics and actuarial models for investments including interest, annuities, stocks, bonds, and mutual funds. There is an introduction to financial derivatives, options, and futures. Preparation for Exam FM/2. Prerequisite: MATH 250 (Calculus II) with C or better.

MATH401 - Life Contingencies I 401-3 Life Contingencies I. This course examines actuarial models for life insurance. Life contingency models include life insurance liability calculations, annuities, and credit risk. Basic properties of survival models and Poisson processes are covered. This course and MATH 402 prepare students for Exam MLC/3L. Prerequisite: MATH 483 with C or better.
MATH402 - Life Contingencies II 402-3 Life Contingencies II. This is a second course in actuarial models for life insurance including multiple contingencies, multiple survivals and claim frequency models. Basic properties of Markov Chains are covered. This course and MATH 401 prepare students for Exam MLC/3L. Prerequisites: MATH 221 and MATH 401 with C or better.

MATH403 - Loss Models I 403-3 Loss Models I. This course examines loss models including severity models, ruin models, and estimating and fitting the models. This course and MATH 404 prepare students for Exam C/4. Prerequisite: MATH 483 with C or better.

MATH404 - Loss Models II 404-3 Loss Models II. This is a second course in loss models including estimation and fitting of severity and ruin models, and credibility theory. This course and MATH 403 prepare students for Exam C/4. Prerequisite: MATH 403 with C or better.

MATH405 - Intermediate Diff Equations 405-3 Intermediate Differential Equations. This course features the study of several sets of differential equations with the aid of computers. The equations are actual applications in biology, chemistry, economics, engineering, finance, medicine and physics. Where possible, problems will be chosen to match student's interests. Students from these areas are particularly welcome. Basic theory of differential equations is cited as needed. Prerequisite: MATH 305 with C or better.

MATH406 - Linear Analysis 406-3 Linear Analysis. Introduction to function spaces and operators used in quantum mechanics, partial differential equations, etc. Topics include: discrete and continuous models for the vibrating string, separation of variables, eigensystem analysis, inner product spaces; operators on inner produce spaces; the spectral theorem for Hermitian operators on finite dimensional spaces, the Courant-Fisher characterization. Prerequisite: MATH 221 and MATH 305 with C or better.

MATH407 - Partial Differential Equations 407-3 Partial Differential Equations. Solution methods for linear partial differential equations arising in engineering and science. Topics include: the heat equation, the wave equation, Laplace's equation, separation of variables, boundary and initial value problems, uniqueness via the energy methods, the maximum principle and characteristics. Solutions to the vibrating string and dissipation of heat in a bar will be discussed. Prerequisite: MATH 251 and MATH 305 with C or better.

MATH409 - Fourier Analysis 409-3 Fourier Analysis. Introduction to the theory, techniques and applications of Fourier analysis. Topics include: Fourier synthesis and analysis equations for periodic and aperiodic functions; convolution; the calculus of Fourier transforms, Fourier series of DFT's; operators and Fourier transforms; FFT and related algorithms; generalized functions such as Dirac's delta and others; selected applications. Prerequisite: MATH 221 and MATH 305 with C or better.

MATH411 - Math Topics for Teachers 411-1 to 6 Mathematical Topics for Teachers. Variety of short courses in mathematical ideas useful in curriculum enrichment in elementary and secondary mathematics. May be repeated as topics vary. Does not count toward a mathematics major.

MATH412 - Prob Solving Approach 412-3 Problem Solving Approaches to Basic Mathematical Skills. Content of basic skills at all levels of education and the development of these skills from elementary school through college; emphasis on problem solving and problem solving techniques; determination of student skills and proficiency level. Credit may not be applied toward degree requirements in mathematics. Prerequisite: MATH 321 or CI 321.

MATH417 - Applied Matrix Theory 417-3 Applied Matrix Theory. Selected applications of matrices to physics, chemistry and economics. This material is also useful for engineering and computer science. Topics include matrix representation of symmetry groups, non-negative matrices and the subsidy problem, location of eigenvalues. Prerequisite: MATH 221 with C or better.

MATH418 - Computer Algebra Systems 418-3 Computer Algebra Systems. This course presents modern computer algebra systems (CAS) as a research tool in mathematics. The use of a CAS in the preparation of reports, theses and dissertations will also be covered. Topics will include: solving differential equations with a CAS; plotting techniques with a CAS; symbolic packages for such areas as abstract algebra, number theory; and combinatorics; programming with a CAS; exporting results to TeX or
word processing software; The AMS-LaTeX package. Restricted to graduate standing. Special approval needed from the instructor.

MATH419 - Intro Abstract Algebra II 419-3 Introduction to Abstract Algebra II. A detailed study of polynomial equations in one variable. Solvable groups and the Galois theory of field extensions are developed and applied to extensions of the quadratic formula, proving the impossibility of trisecting an angle with only a straight-edge and compass, and to the basic facts about finite fields as needed in coding theory and computer science. Prerequisite: MATH 319 with C or better.

MATH421 - Linear Algebra 421-3 Linear Algebra. The extension of basic linear algebra to arbitrary scalars. The theory and computation of Jordan forms of matrices (as needed e.g., for certain diffusion equations). Inner products, quadratic forms and Sylvester's Law of Inertia. Prerequisite: MATH 221 with C or better.

MATH425 - Intro to Number Theory 425-3 Introduction to Number Theory. Properties of integers, primes, divisibility, congruences, quadratic forms, diophantine equations, and other topics in number theory. Prerequisite: MATH 319 with C or better.

MATH430 - Intro to Topology 430-3 Introduction to Topology. Study of the real line and the plane, metric spaces, topological spaces, compactness, connectedness, continuity, products, quotients and fixed point theorems. This course will be particularly useful to students who intend to study analysis or applied mathematics. Prerequisite: MATH 250 and MATH 302 with grades of C or better.

MATH433 - Classical & Modern Geometry 433-3 Classical and Modern Geometry. Introduction to the foundations of Euclidean and non-Euclidean geometries. Topics include synthetic approach (Euclidean geometry, axiomatic systems, constructions, proofs), symmetries (similarity, congruence and various transformations and their invariants), metric approach (distance), vector space approach (transformations and matrices, inner product), inversive geometry, projective geometry (art and math) and non-Euclidean geometries. Some applications in modern science, like Relativity Theory, may also be covered. Historical background and connections with other parts of mathematics, science and culture are important components of this course. Prerequisite: MATH 250 and MATH 302 with grades of C or better.

MATH435 - Elem Differential Geometry 435-3 Elementary Differential Geometry. Introduction to modern differential geometry through the study of curves in R3. Local curve theory with emphasis on the Serret-Frenet formulas; global curve theory including Fenchel's theorem; local surface theory motivated by curve theory; global surface theory including the Gauss-Bonnet theorem. Prerequisite: MATH 221 and MATH 251 with C or better.

MATH447 - Intro to Graph Theory 447-3 Introduction to Graph Theory. (Same as CS 447) Graph theory is an area of mathematics which is fundamental to future problems such as computer security, parallel processing, the structure of the World Wide Web, traffic flow and scheduling problems. It also plays an increasingly important role within computer science. Topics include: trees, coverings, planarity, colorability, digraphs, depth-first and breadth-first searches. Prerequisite: MATH 349 with C or better.

MATH449 - Intro to Combinatorics 449-3 Introduction to Combinatorics. (Same as CS 449) This course will introduce the student to various basic topics in combinatorics that are widely used throughout applicable mathematics. Possible topics include: elementary counting techniques, pigeonhole principle, multinomial principle, inclusion and exclusion, recurrence relations, generating functions, partitions, designs, graphs, finite geometry, codes and cryptography. Prerequisite: MATH 349 with C or better.

MATH450 - Methods of Advanced Calculus 450-3 Methods of Advanced Calculus. Multivariable calculus fundamental to continuum mechanics, differential geometry, electromagnetism, relativity, thermodynamics, etc. Includes: parametric curves and surfaces, inverse and implicit function theorems, contraction mapping and fixed point theorems, differentials, convergence of multivariate integrals, coordinate systems in space, Jacobians, surfaces, volumes and Green's, Gauss', and Stokes' theorems. Prerequisite: MATH 251 with C or better.

MATH452 - Introduction to Analysis 452-3 Introduction to Analysis. A rigorous development of one-variable calculus providing the tools necessary for understanding all other advanced courses in analysis. Topics include: sets, axioms for the real numbers, continuity, limits, differentiation, the Riemann integral,
infinite sequences and series of functions. Additional topics may include areas such as Riemann-Stieltjes integration or the analysis of multivariable functions. Prerequisite: MATH 352 with C or better.

MATH455 - Complex Analysis 455-3 Complex Analysis with Applications. Analysis of differentiable functions of a single complex variable. Introduces mathematical techniques used to analyze problems in the sciences and engineering that are inherently two dimensional. Topics include: the complex plane, analytic functions, the Cauchy-Riemann equations, line integrals, the Cauchy integral formula, Taylor and Laurent series, the residue theorem, conformal mappings, applications. Prerequisite: MATH 251 with C or better.

MATH460 - Transformation Geometry 460-3 Transformation Geometry. Geometry viewed as the study of properties invariant under the action of a group. Topics include collineations, isometries, Frieze groups, Leonardo’s Theorem, the classification of isometries of Euclidean and hyperbolic geometries. Recommended elective for secondary education majors in mathematics. Prerequisite: MATH 319 with C or better.

MATH471 - Optimization Techniques 471-3 Optimization Techniques. (Same as CS 471) Introduction to algorithms for finding extreme values of nonlinear multivariable functions with or without constraints. Topics include: convex sets and functions; the arithmetic-geometric mean inequality; Taylor’s theorem for multivariable functions; positive definite, negative definite, and indefinite matrices; iterative methods for unconstrained optimization. Prerequisite: MATH 221 and MATH 250 with C or better.

MATH472 - Linear Programming 472-3 Linear Programming. (Same as CS 472) Introduction to finding extreme values of linear functionals subject to linear constraints. Topics include: recognition, formulation, and solution of real problems via the simplex algorithm; development of the simplex algorithm; artificial variables; the dual problem and duality theorem; complementary slackness; sensitivity analysis; and selected applications of linear programming. Prerequisite: MATH 221 with C or better.

MATH473 - Reliability & Survival Models 473-3 Reliability and Survival Models. Introduction to statistical analysis of data on lifetime, including hazard functions and failure distributions; estimation and hypothesis testing in life testing experiments with complete as well as censored data. Prerequisite: MATH 480 or MATH 483 with C or better.

MATH474 - Time Series 474-3 Time Series. An introduction to time series: AR, MA and ARIMA models; estimation, time series models. Prerequisite: MATH 480 or MATH 483 with C or better.

MATH475 - Numerical Analysis I 475-3 Numerical Analysis I. (Same as CS 475) Introduction to theory & techniques for computation with digital computers. Topics include: solution of nonlinear equations; interpolation & approximation; solution of systems of linear equations; numerical integration. Students will use MATLAB to study the numerical performance of the algorithms introduced in the course. Prerequisites: MATH 221 and MATH 250 with C or better.

MATH476 - Numerical Analysis II 476-3 Numerical Analysis II. Continuation of MATH 475. Topics include: solution of ordinary differential equations; computation of eigenvalues and eigenvectors; and solution of partial differential equations. Students will use MATLAB to study the numerical performance of the algorithms introduced in the course. Prerequisites: MATH 305 and MATH 475 with a C or better.

MATH480 - Prob Stoch Processes I 480-3 Probability, Stochastic Processes and Applications I. Introduction to the central topics of modern probability including elementary stochastic processes; random variables and their properties; sum of independent random variables and the Central Limit Theorem; random walks; discrete time finite state Markov chains; applications to random number generators and image and signal processing. Also generating functions, conditional probability, expectation, moments. Prerequisite: MATH 250 with C or better.

MATH481 - Prob Stoch Processes II 481-3 Probability, Stochastic Processes and Applications II. Continuation of MATH 480. Thorough introduction to Markov processes and Martingales, including the laws of large numbers, classification of states, recurrence, convergence to the stationary distribution in Markov chains, birth processes, Poisson processes, stopping times, and the Martingale convergence theorem. Important and current applications will be included. Prerequisite: MATH 251 and MATH 480 each with C or better.
MATH483 - Math Stats in Engr & Sci 483-4 Mathematical Statistics in Engineering and the Sciences. Develops the basic statistical techniques used in applied fields like engineering, and the physical and natural sciences. Principal topics include probability; random variables; expectations; moment generating functions; transformations of random variables; point and interval estimation; tests of hypotheses. Applications include one-way classification data and chi-square tests for cross classified data. Prerequisite: MATH 250 with C or better.

MATH484 - Applied Regression Analysis 484-3 Applied Regression Analysis and Experimental Design. Introduction to linear models and experimental design widely used in applied statistical work. Topics include linear models; analysis of variance; analysis of residuals; regression diagnostics; randomized blocks; Latin squares; factorial designs. Applications include response surface methodology and model building. Computations will require the use of a statistical package such as SAS. Prerequisite: MATH 221 and MATH 483 with C or better.

MATH485 - Applied Statistical Methods 485-3 Applied Statistical Methods. Introduction to sampling methods and categorical data analysis widely used in applied areas such as a social and biomedical sciences and business. Sampling methods topics include: simple random and stratified sampling; ratio and regression estimators. Categorical data analysis topics include: contingency tables; loglinear models; logistic regression; model selection; use of a computer package. Prerequisite: MATH 483 with C or better.

MATH486 - Statistical Computing 486-3 Statistical Computing. This course covers Statistical Computing Software packages such as R and SAS, helps prepare students for SAS certification. Topics include obtaining and analyzing output for regression, experimental design, and generalized linear models. Prerequisites: MATH 484 and CS 202 both with C or better.

MATH490 - Topics in Mathematics 490-3 Topics in Mathematics. Selected topics in mathematics chosen from such areas as: (a) Financial Mathematics, Mathematical Biology or Actuarial Mathematics; (b) Probability, Statistics or Stochastic Processes; (c) Mathematical topics not including Statistics, such as Operations Research, Cryptography and High Dimensional computing in Numerical Analysis, etc. May be repeated up to 3 times as topics vary. Special approval needed from the instructor.

MATH492 - Industrial Applied Math Clinic 492-3 Industrial and Applied Mathematics Clinic. Students will participate in a semester-long project to apply their mathematical knowledge to a problem supplied by a business, industrial, or community partner. Students will work in teams, and will engage in client contact, including a final report of their results to the client. Mathematical modeling, research, communication, and project management skills will be developed, along with core mathematical competency needed to solve the client problem. Prerequisites: MATH 221, MATH 483, and CS 202 with grades of C or better.

MATH495 - Special Topics in Math 495-1 to 6 Special Topics in Mathematics. Individual study or small group discussions in special areas of interest under the direction of a member of the faculty. Special approval needed from the chair and instructor.

Mathematics Faculty
Ban, Dubravka, Professor, Dr. Sci., University of Zagreb, 1998.
Bhattacharya, Bhaskar, Professor and Chair, Ph.D., University of Iowa, 1993.
Calvert, Wesley, Associate Professor, Ph.D., University of Notre Dame, 2005.
Choiy, Kwangho, Assistant Professor, Ph.D., Purdue University, 2012.
Hughes, Harry R., Associate Professor, Ph.D., Northwestern University, 1988.
Kocik, Jerzy, Associate Professor, Ph.D., Southern Illinois University Carbondale, 1989.
McSorley, John, Professor, Ph.D., Oxford University, 1988.
Olive, David, Professor, Ph.D., University of Minnesota, 1998.
Redmond, Donald, Associate Professor, Ph.D., University of Illinois, 1976.
Samadi, Yaser, Assistant Professor, Ph.D., University of Georgia, 2014.
Schurz, Henri, Professor, Ph.D., Humboldt University, Berlin, 1997.
Sullivan, Michael, Professor, Ph.D., University of Texas at Austin, 1992.
Xiao, Mingqing, Professor, Ph.D., University of Illinois, 1997.
Xu, Dashun, Professor, Ph.D., Memorial University of Newfoundland, 2004.
Xu, Jianhong, Associate Professor, Ph.D., University of Connecticut 2003.

Emeriti Faculty

Beckemeyer, Imogene C., Assistant Professor, Emerita, M.A., Southern Illinois University, 1952.
Clark, Lane, Professor, Emeritus, Ph.D., University of New Mexico, 1980.
Crenshaw, James, Associate Professor, Emeritus, Ph.D., University of Illinois, 1967.
Danhof, Kenneth, Professor, Emeritus, Ph.D., Purdue University, 1969.
Dharmadhikari, Sudhakar, Professor, Emeritus, Ph.D., University of California at Berkeley, 1962.
Earnest, Andrew, Professor, Emeritus, Ph.D., Ohio State University, 1975.
Elston, George, Assistant Professor, Emeritus, M.S., University of Wisconsin, 1949.
Feinsilver, Philip, Professor, Emeritus, Ph.D., New York University (Courant), 1975.
Fitzgerald, Robert W., Professor, Emeritus, Ph.D., University of California at Los Angeles, 1980.
Foland, Neal E., Professor, Emeritus, Ph.D., University of Missouri, 1961.
Grimmer, Ronald C., Professor, Emeritus, Ph.D., University of Iowa, 1967.
Hooker, John W., Professor, Emeritus, Ph.D., University of Oklahoma, 1967.
Hunsaker, Worthen N., Professor, Emeritus, Ph.D., Washington State University, 1966.
Jeyaratnam, Sakthivel, Professor, Emeritus, Ph.D., Colorado State University, 1978.
Kammler, David, Professor, Emeritus, Ph.D., University of Michigan, 1971.
Kirk, Ronald B., Professor, Emeritus, Ph.D., California Institute of Technology, 1968.
Koch, Charles, Assistant Professor, Emeritus, Ph.D., University of Illinois, 1961.
Langenhop, Carl E., Professor, Emeritus, Ph.D., Iowa State University, 1948.
Mark, Abraham M., Professor, Emeritus, Ph.D., Cornell University, 1947.
Moore, Robert A., Associate Professor, Emeritus, Ph.D., Indiana University, 1961.
Neuman, Edward G., Professor, Emeritus, Ph.D., University of Wroclaw (Poland), 1972.
Paine, Thomas B., Assistant Professor, Emeritus, Ph.D., University of Oregon at Eugene, 1966.
Pedersen, Franklin D., Associate Professor, Emeritus, Ph.D., Tulane University, 1967.
Pericak-Spector, Kathleen, Professor, Emerita, Ph.D., Carnegie-Mellon University, 1980.
Wallis, Walter, Professor, Emeritus, Ph.D., University of Sydney, 1968.
Wright, Mary H., Professor, Emerita, Ph.D., McGill University (Montreal), 1977.
Zeman, Marvin, Professor, Emeritus, Ph.D., New York University (Courant Institute), 1974.

Last updated: 03/04/2021

Southern Illinois University
Carbondale, IL 62901
Phone: (618) 453-2121

Catalog Year Statement:
Students starting their collegiate training during the period of time covered by this catalog (see bottom of this page) are subject to the curricular requirements as specified herein. The requirements herein will extend for a seven calendar-year period from the date of entry for baccalaureate programs and three
years for associate programs. Should the University change the course requirements contained herein subsequently, students are assured that necessary adjustments will be made so that no additional time is required of them.